Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a numb...Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a number of smaller sub-lots and moving the completed portion of the sub-lots to downstream machine. In this way, the production is accelerated. This paper presents a discrete artificial bee colony (DABC) algorithm for a lot-streaming flowshop scheduling problem with total flowtime criterion. Unlike the basic ABC algorithm, the proposed DABC algorithm represents a solution as a discrete job permutation. An efficient initialization scheme based on the extended Nawaz-Enscore-Ham heuristic is utilized to produce an initial population with a certain level of quality and diversity. Employed and onlooker bees generate new solutions in their neighborhood, whereas scout bees generate new solutions by performing insert operator and swap operator to the best solution found so far. Moreover, a simple but effective local search is embedded in the algorithm to enhance local exploitation capability. A comparative experiment is carried out with the existing discrete particle swarm optimization, hybrid genetic algorithm, threshold accepting, simulated annealing and ant colony optimization algorithms based on a total of 160 randomly generated instances. The experimental results show that the proposed DABC algorithm is quite effective for the lot-streaming flowshop with total flowtime criterion in terms of searching quality, robustness and effectiveness. This research provides the references to the optimization research on lot-streaming flowshop.展开更多
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to...An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.展开更多
The paper presents a prototype of virtual decoder of the transport stream's system target decoder (T-STD). By connecting the coding model and decoding model, and feeding the overflow of decoding buffer back to cont...The paper presents a prototype of virtual decoder of the transport stream's system target decoder (T-STD). By connecting the coding model and decoding model, and feeding the overflow of decoding buffer back to control coding, we have got a self-adaptive coding model, and propose an algorithm of muhiplexing multiple elementary streams to a transport stream based on the principle of virtual buffer controlling strategy. The transport stream (TS) which uses this method passes the test of software unzipping and set top-box (STB) playing, and all of the analyzing parameters which are detected by code analyzer accord with the standard of MPEG-2. Some problems that playing time becomes longer and mul tiple TS streaming can not be fit for all the players are also analyzed.展开更多
In this work,we study a k-Cardinality Constrained Regularized Submodular Maximization(k-CCRSM)problem,in which the objective utility is expressed as the difference between a non-negative submodular and a modular funct...In this work,we study a k-Cardinality Constrained Regularized Submodular Maximization(k-CCRSM)problem,in which the objective utility is expressed as the difference between a non-negative submodular and a modular function.No multiplicative approximation algorithm exists for the regularized model,and most works have focused on designing weak approximation algorithms for this problem.In this study,we consider the k-CCRSM problem in a streaming fashion,wherein the elements are assumed to be visited individually and cannot be entirely stored in memory.We propose two multipass streaming algorithms with theoretical guarantees for the above problem,wherein submodular terms are monotonic and nonmonotonic.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 60973085, 61174187)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA044601)New Century Excellent Talents in University of China (Grant No. NCET-08-0232)
文摘Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a number of smaller sub-lots and moving the completed portion of the sub-lots to downstream machine. In this way, the production is accelerated. This paper presents a discrete artificial bee colony (DABC) algorithm for a lot-streaming flowshop scheduling problem with total flowtime criterion. Unlike the basic ABC algorithm, the proposed DABC algorithm represents a solution as a discrete job permutation. An efficient initialization scheme based on the extended Nawaz-Enscore-Ham heuristic is utilized to produce an initial population with a certain level of quality and diversity. Employed and onlooker bees generate new solutions in their neighborhood, whereas scout bees generate new solutions by performing insert operator and swap operator to the best solution found so far. Moreover, a simple but effective local search is embedded in the algorithm to enhance local exploitation capability. A comparative experiment is carried out with the existing discrete particle swarm optimization, hybrid genetic algorithm, threshold accepting, simulated annealing and ant colony optimization algorithms based on a total of 160 randomly generated instances. The experimental results show that the proposed DABC algorithm is quite effective for the lot-streaming flowshop with total flowtime criterion in terms of searching quality, robustness and effectiveness. This research provides the references to the optimization research on lot-streaming flowshop.
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
基金National Key Basic Research and Development Program of China(No.2013CB329503)National Natural Science Foundation of China(No.61174189)the Doctoral Program Foundation of Institutions of Higher Education of China(No.20130002110057)
文摘An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.
基金Supported by the Electronics Developing FundProject ( MII[2002]13)
文摘The paper presents a prototype of virtual decoder of the transport stream's system target decoder (T-STD). By connecting the coding model and decoding model, and feeding the overflow of decoding buffer back to control coding, we have got a self-adaptive coding model, and propose an algorithm of muhiplexing multiple elementary streams to a transport stream based on the principle of virtual buffer controlling strategy. The transport stream (TS) which uses this method passes the test of software unzipping and set top-box (STB) playing, and all of the analyzing parameters which are detected by code analyzer accord with the standard of MPEG-2. Some problems that playing time becomes longer and mul tiple TS streaming can not be fit for all the players are also analyzed.
基金This work was supported by the Beijing Natural Science Foundation Project(No.Z220004)the National Natural Science Foundation of China(Nos.11901544 and 12101587)the China Postdoctoral Science Foundation(No.2022M720329).
文摘In this work,we study a k-Cardinality Constrained Regularized Submodular Maximization(k-CCRSM)problem,in which the objective utility is expressed as the difference between a non-negative submodular and a modular function.No multiplicative approximation algorithm exists for the regularized model,and most works have focused on designing weak approximation algorithms for this problem.In this study,we consider the k-CCRSM problem in a streaming fashion,wherein the elements are assumed to be visited individually and cannot be entirely stored in memory.We propose two multipass streaming algorithms with theoretical guarantees for the above problem,wherein submodular terms are monotonic and nonmonotonic.