期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Logistic Regression for Evolving Data Streams Classification
1
作者 尹志武 黄上腾 薛贵荣 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期197-203,共7页
Logistic regression is a fast classifier and can achieve higher accuracy on small training data.Moreover,it can work on both discrete and continuous attributes with nonlinear patterns.Based on these properties of logi... Logistic regression is a fast classifier and can achieve higher accuracy on small training data.Moreover,it can work on both discrete and continuous attributes with nonlinear patterns.Based on these properties of logistic regression,this paper proposed an algorithm,called evolutionary logistical regression classifier(ELRClass),to solve the classification of evolving data streams.This algorithm applies logistic regression repeatedly to a sliding window of samples in order to update the existing classifier,to keep this classifier if its performance is deteriorated by the reason of bursting noise,or to construct a new classifier if a major concept drift is detected.The intensive experimental results demonstrate the effectiveness of this algorithm. 展开更多
关键词 CLASSIFICATION logistic regression data stream mining
下载PDF
Analytical Engineering for Data Stream
2
作者 Rogério Rossi Kechi Hirama 《Journal of Computer and Communications》 2022年第7期13-34,共22页
The analytical capacity of massive data has become increasingly necessary, given the high volume of data that has been generated daily by different sources. The data sources are varied and can generate a huge amount o... The analytical capacity of massive data has become increasingly necessary, given the high volume of data that has been generated daily by different sources. The data sources are varied and can generate a huge amount of data, which can be processed in batch or stream settings. The stream setting corresponds to the treatment of a continuous sequence of data that arrives in real-time flow and needs to be processed in real-time. The models, tools, methods and algorithms for generating intelligence from data stream culminate in the approaches of Data Stream Mining and Data Stream Learning. The activities of such approaches can be organized and structured according to Engineering principles, thus allowing the principles of Analytical Engineering, or more specifically, Analytical Engineering for Data Stream (AEDS). Thus, this article presents the AEDS conceptual framework composed of four pillars (Data, Model, Tool, People) and three processes (Acquisition, Retention, Review). The definition of these pillars and processes is carried out based on the main components of data stream setting, corresponding to four pillars, and also on the necessity to operationalize the activities of an Analytical Organization (AO) in the use of AEDS four pillars, which determines the three proposed processes. The AEDS framework favors the projects carried out in an AO, that is, its Analytical Projects (AP), to favor the delivery of results, or Analytical Deliverables (AD), carried out by the Analytical Teams (AT) in order to provide intelligence from stream data. 展开更多
关键词 Analytical Engineering Analytical Organization Data stream Analytics stream mining
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部