The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition...The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).展开更多
The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamenta...The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics.展开更多
This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density fun...This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density function is realized by a set of B-spline functions. This generally produces a nonlinear state space model for the weights of the B-spline approximation. A linearized model is therefore obtained and embedded into a performance function that measures the tracking error of the output probability density function with respect to a given distribution. By using this performance function as a Lyapunov function for the closed loop system, a feedback control input has been obtained which guarantees closed loop stability and realizes perfect tracking. The algorithm described in this paper has been tested on a simulated example and desired results have been achieved.展开更多
Synthetic aperture radar (SAR) is portrayed as a multiple access channel. An information theory approach is applied to the SAR imaging system, and the information content about a target that can be extracted from its ...Synthetic aperture radar (SAR) is portrayed as a multiple access channel. An information theory approach is applied to the SAR imaging system, and the information content about a target that can be extracted from its radar image is evaluated by the average mutual information measure. A conditional (transition) probability density function (PDF) of the SAR imaging system is derived by analyzing the system and a closed form of the information content is found. It is shown that the information content obtained by the SAR imaging system from an independent sample of echoes will decrease and the total information content obtained by the SAR imaging system will increase with an increase in the number of looks. Because the total average mutual information is also used to define a measure of radiometric resolution for radar images, it is shown that the radiometric resolution of a radar image of terrain will be improved by spatial averaging. In addition, the imaging process and the data compression process for SAR are each treated as an independent generalized communication channel. The effects of data compression upon radiometric resolution for SAR are studied and some conclusions are obtained.展开更多
Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and c...Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.展开更多
分析了乘性和加性噪声作用下三稳态Van der Pol--Duffng振子的随机P分岔.首先用随机平均法得到系统的随机微分方程,求得系统响应幅值的稳态概率密度函数.然后应用分岔分析的奇异性理论,求得随机P分岔发生的临界参数条件,得到多种定性不...分析了乘性和加性噪声作用下三稳态Van der Pol--Duffng振子的随机P分岔.首先用随机平均法得到系统的随机微分方程,求得系统响应幅值的稳态概率密度函数.然后应用分岔分析的奇异性理论,求得随机P分岔发生的临界参数条件,得到多种定性不同的稳态概率密度曲线.讨论了2种激励噪声强度和系统阻尼对响应稳态概率密度曲线峰的个数、各峰值相对大小的影响.通过Monte--Carlo数值模拟对理论计算结果进行了验证.该方法可用于其他系统的随机P分岔分析.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(No.12205097)the Fundamental Research Funds for the Central Universities(No.2024MS071)。
文摘The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).
文摘The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics.
文摘This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density function is realized by a set of B-spline functions. This generally produces a nonlinear state space model for the weights of the B-spline approximation. A linearized model is therefore obtained and embedded into a performance function that measures the tracking error of the output probability density function with respect to a given distribution. By using this performance function as a Lyapunov function for the closed loop system, a feedback control input has been obtained which guarantees closed loop stability and realizes perfect tracking. The algorithm described in this paper has been tested on a simulated example and desired results have been achieved.
文摘Synthetic aperture radar (SAR) is portrayed as a multiple access channel. An information theory approach is applied to the SAR imaging system, and the information content about a target that can be extracted from its radar image is evaluated by the average mutual information measure. A conditional (transition) probability density function (PDF) of the SAR imaging system is derived by analyzing the system and a closed form of the information content is found. It is shown that the information content obtained by the SAR imaging system from an independent sample of echoes will decrease and the total information content obtained by the SAR imaging system will increase with an increase in the number of looks. Because the total average mutual information is also used to define a measure of radiometric resolution for radar images, it is shown that the radiometric resolution of a radar image of terrain will be improved by spatial averaging. In addition, the imaging process and the data compression process for SAR are each treated as an independent generalized communication channel. The effects of data compression upon radiometric resolution for SAR are studied and some conclusions are obtained.
文摘Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.
文摘分析了乘性和加性噪声作用下三稳态Van der Pol--Duffng振子的随机P分岔.首先用随机平均法得到系统的随机微分方程,求得系统响应幅值的稳态概率密度函数.然后应用分岔分析的奇异性理论,求得随机P分岔发生的临界参数条件,得到多种定性不同的稳态概率密度曲线.讨论了2种激励噪声强度和系统阻尼对响应稳态概率密度曲线峰的个数、各峰值相对大小的影响.通过Monte--Carlo数值模拟对理论计算结果进行了验证.该方法可用于其他系统的随机P分岔分析.