期刊文献+
共找到590篇文章
< 1 2 30 >
每页显示 20 50 100
Influence of hydrogen concentration on Fe_2O_3 particle reduction in fluidized beds under constant drag force 被引量:3
1
作者 Lei Guo Han Gao +2 位作者 Jin-tao Yu Zong-liang Zhang Zhan-cheng Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期12-20,共9页
The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing dur... The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min^-1;H2:2 L·min^-1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model. 展开更多
关键词 fluidized beds ferric oxide iron ores AGGLOMERATION HYDROGEN drag force
下载PDF
Impact of the Drag Force and the Magnus Effect on the Trajectory of a Baseball 被引量:2
2
作者 Haiduke Sarafian 《World Journal of Mechanics》 2015年第4期49-58,共10页
We consider the impact of drag force and the Magnus effect on the motion of a baseball. Quantitatively we show how the speed-dependent drag coefficient alters the trajectory of the ball. For the Magnus effect we envis... We consider the impact of drag force and the Magnus effect on the motion of a baseball. Quantitatively we show how the speed-dependent drag coefficient alters the trajectory of the ball. For the Magnus effect we envision a scenario where the rotation of the ball confines the Magnus force to the vertical plane;gravity, drag force and the Magnus force make a trio-planar system. We investigate the interplay of these forces on the trajectories. 展开更多
关键词 drag force Magnus Effect SPINNING BALL BASEBALL Nonlinear PHYSICS MATHEMATICA
下载PDF
Optimization of the Drag Forces of Shell Janus Micromotor:A Study Based on Hydrodynamical Analysis and Numerical Simulation 被引量:1
3
作者 Qiang Wang Zhen Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期443-462,共20页
Micromotors are widely used in cell operation,drug delivery and environmental decontamination due to their small size,low energy consumption and large propelling power.Compared to traditional Janus micromotor,the shel... Micromotors are widely used in cell operation,drug delivery and environmental decontamination due to their small size,low energy consumption and large propelling power.Compared to traditional Janus micromotor,the shell Janusmicromotor has better motion performance.However,the structural optimization of itsmotion performance is still unclear.The main factor restricting the motion performance of shell Janus micromotors is the drag forces.In the current work,theoretical analysis and numerical simulation were applied to analyze the drag forces of shell Janus micromotors.This study aims to design the optimum structure of shell Janus micromotors with minimum drag forces and obtain the magnitude of drag forces considering both the internal and external fluids of the shell Janus micromotors.Moreover,the influence of the motor geometry and Reynolds number on the drag coefficient was analyzed using numerical simulations.The results provide guidance for the optimum flow velocity,opening diameter and shell thickness to achieve minimum drag force. 展开更多
关键词 Shell janus micromotor drag force dimensionless numbers
下载PDF
Mechanism of drag reduction by spanwise oscillating Lorentz force in turbulent channel flow 被引量:1
4
作者 Leping Huang Baochun Fan Dongjie Mei 《Theoretical & Applied Mechanics Letters》 2012年第1期67-70,共4页
Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin f... Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin friction drag are obtained through the PIV system and the drag measurement system, respectively. The flow field in the near-wall region is shown through direct numerical simulations utilizing spectral method. The experimental results are consistent with the numerical simulation results qualitatively, and both the results indicate that the streaks are tilted into the spanwise direction and the drag reduction utilizing spanwise oscillating Lorentz forces can be realized. The numerical simulation results reveal more detail of the drag reduction mechanism which can be explained, since the spanwise vorticity generated from the interaction between the induced Stokes layer and intrinsic turbulent flow in the near-wall region can make the longitudinal vortices tilt and oscillate, and leads to turbulence suppression and drag reduction. 展开更多
关键词 turbulent control channel flow drag reduction Lorentz force direct numerical simulation
下载PDF
Spectral Analysis of Nonlinear Drag Forces
5
作者 马汝建 李桂喜 赵东 《China Ocean Engineering》 SCIE EI 2005年第2期325-332,共8页
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation... The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures. 展开更多
关键词 offshore engineering random wave drag force NONLINEARITY spectral property Stokes wave theory
下载PDF
In situ calibrating optical tweezers with sinusoidal-wave drag force method
6
作者 李迪 周金华 +5 位作者 呼新尧 钟敏成 龚雷 王自强 王浩威 李银妹 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期626-632,共7页
We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical ... We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy. 展开更多
关键词 optical tweezers trapping stiffness calibration conversion factor drag force method
下载PDF
Observations of the Sun’s Dragging Forces
7
作者 Jose L. Parra 《Journal of Applied Mathematics and Physics》 2020年第4期643-651,共9页
The classical theory of gravity, developed by Isaac Newton, predicts that the gravitational force between two masses is always colinear with the direction defined by the center of mass of both bodies. Some work done i... The classical theory of gravity, developed by Isaac Newton, predicts that the gravitational force between two masses is always colinear with the direction defined by the center of mass of both bodies. Some work done in the last 60 years has shown experimental evidence that the reality may be somehow more complex. That complexity was confirmed by the author of this paper and he goes farther announcing that the Sun is emitting particles with 44 m spatial periodicity that creates isotropic gravitational effects. Those effects are identical to the ones produced by dragging forces according to the General Theory of Relativity under the Kerr’s Metric. The purpose of this paper is to introduce experimental evidence confirming the author’s predictions that the Moon can modify the dragging force coming from the Sun’s core. 展开更多
关键词 GRAVITY Universal GRAVITATIONAL Constant DIFFRACTION Interference dragGING forceS
下载PDF
Applying the Artificial Neural Network to Estimate the Drag Force for an Autonomous Underwater Vehicle
8
作者 Ehsan Yari Ahmadreza Ayoobi Hassan Ghassemi 《Open Journal of Fluid Dynamics》 2014年第3期334-346,共13页
This paper offer an artificial neural network (ANN) model to calculate drag force on an axisymmetric underwater vehicle by obtaining dataset from a computational fluid dynamic analysis. First, great effort was done to... This paper offer an artificial neural network (ANN) model to calculate drag force on an axisymmetric underwater vehicle by obtaining dataset from a computational fluid dynamic analysis. First, great effort was done to calculate the pressure and viscous data forces by increasing the precision and numerical data in order to extend and raise quality of dataset. In this step, numerous different geometry models (configurations of axisymmetric body) were designed, examined and evaluated input parameters including: diameter of body, diameter of nose disc, length of body, length of nose and velocity whereas outputs contain pressure and viscous forces. This dataset was used to train the ANN model. Feed-forward neural network (FFNN) is selected which is more common and suitable in this field’s study. A three-layer neural network was opted and after training this network, the results showed good agreement with CFD data. This study shows that applying the ANN model helps to reach final purpose in the least time and error, in addition a variety of tests can be performed to have a desired design in this way. 展开更多
关键词 drag force FEED-FORWARD NEURAL Networks BACK-PROPAGATION Algorithm AUV
下载PDF
Response Spectrum Method for Extreme Wave Loading With Higher Order Components of Drag Force
9
作者 Tabeshpour Mohammad Reza Fatemi Dezfouli Mani +2 位作者 Dastan Diznab Mohammad Ali Mohajernasab Saied Seif Mohammad Saied 《Journal of Marine Science and Application》 CSCD 2017年第1期27-32,共6页
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass a... Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum. 展开更多
关键词 offshore structure design response spectrum method wave analysis Morison equation higher order components drag force wave loading extreme wave
下载PDF
Numerical Study on Hydrodynamic Forces for Micro Particle Detachment by Droplet Impact 被引量:1
10
作者 孙震海 韩瑞津 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1081-1087,共7页
This paper presents the results of a numerical investigation of micro-sized particle removal by droplet impact. Computational fluid dynamics simulation is used to calculate the flow distribution of droplet impact on a... This paper presents the results of a numerical investigation of micro-sized particle removal by droplet impact. Computational fluid dynamics simulation is used to calculate the flow distribution of droplet impact on a flat surface. The hydrodynamic forces exerted on the particle are then computed. Key factors controlling particle removal are discussed. Both hydrophilic and hydrophobic surfaces are considered. The flow distributions,especially the front edge expanding upon impact at microscale,strongly depend on surface wettability. The associated hydrodynamic forces on the particles vary accordingly. In addition, the impact on a dry surface can produce higher removal efficiency than that on a wet surface. Under the same impact conditions, the drag force exerted on a particle residing on a dry surface can be three orders of magnitudes larger than on a wet surface. Improving droplet impact velocity is more effective than improving droplet size. 展开更多
关键词 droplet impact particle removal drag force lift force WETTABILITY
下载PDF
EFFECT OF INTERPHASE LIFT FORCE ON THE FLUID FLOW IN AN AIR-STIRRED CYLINDRICAL VESSEL 被引量:6
11
作者 L.F. Zhang K.K. Cai Y. Qu and Y.S. Shen Postdoctoral Fellow of Japan Science Promotion Society Taniguchi Lab., Department of Metallurgy, Graduate School of Engineering, Tohoku University, Sendai980-8579, Japan School of Metallurgy, University of Scien 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第4期921-931,共11页
In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially d... In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially discussed. In the Eulerian two-phase model, gas and liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase, k - ε model is used to describe the behavior of the liquid phase. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass consecrvation equation. The contribution of bubble movement to the turbulent energy and its dissipation rate is taken into accounted by adding extra volumetric source terms to the equations of turbulent enemy and its dissipation rate. The comparison between the mathematical simulation and experiment data indicates that the interphase lift force has a big effect on the flow behavior, and considering both drug force and lift force as interphase forces is important to accurately simulate the gas-water two-phase fluid flow in air-stirred systems. The interphase lift force makes bubbles move away from the centerline, the gas concentration is decreased near the centerline, and increased near the wall. The lift force is smaller than drug force at the same place, especially far away from the centerline. 展开更多
关键词 two-phase Eulerian model interphase lift force interphase drag force mathematical simulation
下载PDF
Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations 被引量:5
12
作者 李凤臣 蔡伟华 +1 位作者 张红娜 王悦 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期306-320,共15页
Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading i... Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case. 展开更多
关键词 forced homogenous isotropic turbulence polymer additives turbulent energy cascading drag reduction
下载PDF
Numerical study of the turbulent channel flow under space-dependent electromagnetic force control at different Reynolds numbers 被引量:2
13
作者 Daiwen JIANG Hui ZHANG +3 位作者 Baochun FAN Zijie ZHAO Jian LI Mingyue GUI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第4期435-448,共14页
In this paper, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with the direct numerical simulation(DNS) methods for different Reynol... In this paper, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with the direct numerical simulation(DNS) methods for different Reynolds numbers. A formulation is derived to express the relation between the drag and the Reynolds shear stress. With the application of optimal electromagnetic force, the in-depth relations among characteristic structures in the flow field, mean Reynolds shear stress, and the effect of drag reduction for different Reynolds numbers are discussed. The results indicate that the maximum drag reductions can be obtained with an optimal combination of parameters for each case of different Reynolds numbers. The regular quasi-streamwise vortex structures, which appear in the flow field, have the same period with that of the electromagnetic force.These structures suppress the random velocity fluctuations, which leads to the absolute value of mean Reynolds shear stress decreasing and the distribution of that moving away from the wall. Moreover, the wave number of optimal electromagnetic force increases,and the scale of the regular quasi-streamwise vortex structures decreases as the Reynolds number increases. Therefore, the rate of drag reduction decreases with the increase in the Reynolds number since the scale of the regular quasi-streamwise vortex structures decreases. 展开更多
关键词 FLOW control drag reduction ELECTROMAGNETIC force TURBULENT channel FLOW
下载PDF
Numerical Study on Characteristics of Supercavitating Flow Around the Variable-Lateral-Force Cavitator
14
作者 HU Xiao GAO Ye SHI Xiao-tao 《China Ocean Engineering》 SCIE EI CSCD 2017年第1期123-129,共7页
A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow ... A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases. 展开更多
关键词 supercavitating flow cavitator drag force lateral forces numerical investigation
下载PDF
A Method for Calculating Hydrodynamic Forces on a Maneuvering Ship
15
作者 Yimei Zhou 1) Lewen Zhang 2) Xiuheng Wu 2) (Wuhan Ship Development and Design Institute 1) ,Wuhan 430064,P.R.China) (Wuhan Transportation University 2) ,Wuhan 430063,P.R.China) 《武汉理工大学学报(交通科学与工程版)》 1999年第S1期120-123,共4页
In order to evaluate the ship’s maneuverability at the initial stage of ship design,this paper introduces a method of calculation of the nonlinear forces which depend on the local form of the hull.The calculation res... In order to evaluate the ship’s maneuverability at the initial stage of ship design,this paper introduces a method of calculation of the nonlinear forces which depend on the local form of the hull.The calculation results of the ship “ESSO OSAKA” are presented. 展开更多
关键词 CROSS flow drag local HULL form HYDRODYNAMIC force
下载PDF
Numerical investigation of turbulent channel flow controlled by spatially oscillating spanwise Lorentz force
16
作者 Wentang WU Yanji HONG Baochun FAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1113-1120,共8页
A formulation of the skin-friction drag related to the Reynolds shear stress in a turbulent channel flow is derived. A direct numerical simulation (DNS) of the turbulent control is performed by imposing the spatiall... A formulation of the skin-friction drag related to the Reynolds shear stress in a turbulent channel flow is derived. A direct numerical simulation (DNS) of the turbulent control is performed by imposing the spatially oscillating spanwise Lorentz force. Under the action of the Lorentz force with several proper control parameters, only the periodi- cally well-organized streamwise vortices are finally observed in the near-wall region. The Reynolds shear stress decreases dramatically, especially in the near-wall area, resulting in a drag reduction. 展开更多
关键词 turbulent channel flow direct numerical simulation (DNS) drag reduction Lorentz force
下载PDF
Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration
17
作者 Zai-Sha Mao Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期210-219,共10页
Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formu... Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system.The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number(Re)from 10 to 200 and the dimensionless acceleration(A)between2.0 to 2.0.The simulation demonstrates that the total drag is heavily correlated with A,and large deceleration even drops the drag force to a negative value.It is found that the value of virtual mass force coefficient(CV)of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re.However,the total drag coefficient(CDV)is successfully correlated as a function of Re and A,and it increases as A is increased.The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy. 展开更多
关键词 Total drag coefficient Virtual mass force Solid particle Numerical simulation Vorticity-stream function formulation
下载PDF
基于大气阻力实时辨识的Drag-free卫星最优控制研究 被引量:1
18
作者 党朝辉 项军华 曾国强 《上海航天》 2010年第6期6-10,60,共6页
研究了基于大气阻力实时辨识的Drag-free卫星最优控制。将Drag-free卫星和其内部的验证质量等效为两颗内、外编队卫星并建立动力学方程,推导了基于卫星和验证质量的相对运动状态观测值反演大气阻力的算法。建立了状态最优调节器模型,采... 研究了基于大气阻力实时辨识的Drag-free卫星最优控制。将Drag-free卫星和其内部的验证质量等效为两颗内、外编队卫星并建立动力学方程,推导了基于卫星和验证质量的相对运动状态观测值反演大气阻力的算法。建立了状态最优调节器模型,采用动态规划求解经典的二次型最优控制。对低轨圆轨道Drag-free卫星的仿真计算结果表明方法的求解精度较高,计算消耗较小。 展开更多
关键词 drag-free卫星 跟踪保持 最优控制 大气阻力 实时辨识
下载PDF
The Mechanism of Drag Reduction around Bodies of Revolution Using Bionic Non-Smooth Surfaces 被引量:16
19
作者 Li-mei Tian Lu-quan Ren +2 位作者 Qing-ping Liu Zhi-wu Han Xiao Jiang 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第2期109-116,共8页
Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodie... Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag. 展开更多
关键词 bionic non-smooth surface drag reduction mechanisms boundary layer pressure force
下载PDF
Simulation of the Clustering Phenomenon in a Fast Fluidized Bed: The Importance of Drag Correlation 被引量:9
20
作者 王维 李佑楚 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第3期335-341,共7页
Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not bee... Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction. 展开更多
关键词 drag force kinetic theory granular materials fast fluidization multiphase flow SIMULATION
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部