This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite el...This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.展开更多
A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for-...A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for- mulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pres- sure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to Re = 27500, and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes.展开更多
A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) ...A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.展开更多
文摘This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.
基金the National Natural Science Foundation of China (Grants 41372301 and 51349011)the Preeminent Youth Talent Project of Southwest University of Science and Technology (Grant 13zx9109)
文摘A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for- mulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pres- sure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to Re = 27500, and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes.
基金Project supported by the National Natural Science Foundation of China (No.51078230)the Research Fund for the Doctoral Program of Higher Education of China (No.200802480056)the Key Project of Fund of Science and Technology Development of Shanghai (No.10JC1407900),China
文摘A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.