期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electronic structure regulation and built-in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti-BiOBr/TiO_(2)heterostructure
1
作者 Ru-Qi Li Yu-Jie Bian +5 位作者 Chun-Ming Yang Li Guo Tao-Xia Ma Chuan-Tao Wang Feng Fu Dan-Jun Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1125-1138,共14页
At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficult... At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N.In this study,Ti was doped into BiOBr by one-step hydrothermal method,which was oxidized into TiO_(2)when the doping amount reaches the maximum,in situ forming Ti_(0.31)B_(0.69)OB/TiO_(2)composites.Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction,the synthetic ammonia efficiency of Ti_(0.31)B_(0.69)OB/TiO_(2)-11.96 reached 1.643 mmol·g_(cat)^(-1)at mild conditions and without hole scavenger for up to 7 h,the efficiency of synthetic ammonia is 115 times,10.5 times and 3.3 times of that of BiOBr,Ti_(0.31)B_(0.69)OB and TiO_(2),respectively.Specifically,DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr,facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier,thus accelerating the reaction kinetics of photocatalytic nitrogen reduction(NRR),Meanwhile,constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron-hole pairs,improving the reduction ability of electrons in the conduction band of TiO_(2)and the oxidation ability of holes in the valence band of Ti_(0.31)B_(0.69)OB. 展开更多
关键词 S-scheme heterostructure Electronic structure regulation Built-in electric field Synergistical stren4gthening Photocatalytic nitrogen fixation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部