High-performance multifunctional polymeric materials integrated with high fire safety,excel-lent mechanical performances and electromagnetic interference(EMI)shielding properties have great prospects in practical appl...High-performance multifunctional polymeric materials integrated with high fire safety,excel-lent mechanical performances and electromagnetic interference(EMI)shielding properties have great prospects in practical applications.However,designing highly fire-safe and mechanically ro-bust EMI shielding nanocomposites remains a great challenge.Herein,hierarchical thermoplastic polyurethane/cyclophosphazene functionalized titanium carbide/carbon fiber fabric(TPU/CP-Ti_(3)C_(2)T_(x)/CF)nanocomposites with high fire safety and mechanical strength and toughness were prepared through the methods of melt blending,layer-by-layer stacking and thermocompression.The TPU/CP-Ti_(3)C_(2)T_(x)showed improved thermal stability.Moreover,the peak of heat release rate and total heat release of the hi-erarchical TPU sample containing 4.0 wt.%CP-Ti_(3)C_(2)T_(x)were respectively reduced by 64.4%and 31.8%relative to those of pure TPU,which were far higher than those of other TPU-based nanocomposites.The averaged EMI shielding effectiveness value of the hierarchical TPU/CP-Ti_(3)C_(2)T_(x)-2.0/CF nanocomposite reached 30.0 dB,which could satisfy the requirement for commercial applications.Furthermore,the ten-sile strength of TPU/CP-Ti_(3)C_(2)T_(x)-2.0/CF achieved 43.2 MPa,and the ductility and toughness increased by 28.4%and 84.3%respectively compared to those of TPU/CF.Interfacial hydrogen bonding in combination with catalytic carbonization of CP-Ti_(3)C_(2)T_(x)nanosheets and continuous conductive network of CF were re-sponsible for the superior fire safety,excellent EMI shielding and outstanding mechanical performances.This work offers a promising strategy to prepare multifunctional TPU-based nanocomposites,which have the potential for large-scale application in the fields of electronics,electrical equipment and 5 G facilities.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.52173070)the Opening Test-ing Funds for the Valuable Equipments of Fuzhou University(No.2023T013).
文摘High-performance multifunctional polymeric materials integrated with high fire safety,excel-lent mechanical performances and electromagnetic interference(EMI)shielding properties have great prospects in practical applications.However,designing highly fire-safe and mechanically ro-bust EMI shielding nanocomposites remains a great challenge.Herein,hierarchical thermoplastic polyurethane/cyclophosphazene functionalized titanium carbide/carbon fiber fabric(TPU/CP-Ti_(3)C_(2)T_(x)/CF)nanocomposites with high fire safety and mechanical strength and toughness were prepared through the methods of melt blending,layer-by-layer stacking and thermocompression.The TPU/CP-Ti_(3)C_(2)T_(x)showed improved thermal stability.Moreover,the peak of heat release rate and total heat release of the hi-erarchical TPU sample containing 4.0 wt.%CP-Ti_(3)C_(2)T_(x)were respectively reduced by 64.4%and 31.8%relative to those of pure TPU,which were far higher than those of other TPU-based nanocomposites.The averaged EMI shielding effectiveness value of the hierarchical TPU/CP-Ti_(3)C_(2)T_(x)-2.0/CF nanocomposite reached 30.0 dB,which could satisfy the requirement for commercial applications.Furthermore,the ten-sile strength of TPU/CP-Ti_(3)C_(2)T_(x)-2.0/CF achieved 43.2 MPa,and the ductility and toughness increased by 28.4%and 84.3%respectively compared to those of TPU/CF.Interfacial hydrogen bonding in combination with catalytic carbonization of CP-Ti_(3)C_(2)T_(x)nanosheets and continuous conductive network of CF were re-sponsible for the superior fire safety,excellent EMI shielding and outstanding mechanical performances.This work offers a promising strategy to prepare multifunctional TPU-based nanocomposites,which have the potential for large-scale application in the fields of electronics,electrical equipment and 5 G facilities.