Archean to Cenozoic mafic volcanic rocks from the North China craton are studied. They show Archean Proterozoic (Ar Pt) boundary and geochemical anomalies in Cenozoic basalts. Proterozoic mafic volcanics are enriche...Archean to Cenozoic mafic volcanic rocks from the North China craton are studied. They show Archean Proterozoic (Ar Pt) boundary and geochemical anomalies in Cenozoic basalts. Proterozoic mafic volcanics are enriched in most of the high field strength elements (HFSE) compared with Archean ones. Nb, Ta and Th show a distinct sequence of incompatibility in Archean and Proterozoic. The Cenozoic basalts are enriched in HFSE and Ni and their REEs are strongly differentiated with positive Eu anomalies ( δ (Eu)=1.14). The Ar Pt boundary could be related to change in oxygen fugacity and requires an increasing importance of enriched mantle source. The geochemistry of Cenozoic basalts implies a mantle source similar to OIB. Residuum from subducting partial melting of old basaltic oceanic crust and continental crust is likely to contribute to the formation of the enriched mantle.展开更多
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ...The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.展开更多
A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, th...A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, the dense grids are adjusted accordingly. Four cases with different loads are compared, thus the influences of different loads on the section are analyzed. Numerical results show that the maximum stress of the section is lower than the strength limit of the material, and the section will not be broken with the static loads.展开更多
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch...The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.展开更多
By means of finite element analysis methods calculated the stress, strainand displacement of the belt teeth and analysisied the factors such as load distribution,specific property coefficient of material and tempe...By means of finite element analysis methods calculated the stress, strainand displacement of the belt teeth and analysisied the factors such as load distribution,specific property coefficient of material and temperature variation, which influence the fatigue strength of the belt teeth..展开更多
A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along ...A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.展开更多
This paper presents a constitutive framework for finite element analysis of the truck beam end cutting process.For this purpose,a finite strain anisotropic elasto-plastic model,which takes nonlinear kinematic and isot...This paper presents a constitutive framework for finite element analysis of the truck beam end cutting process.For this purpose,a finite strain anisotropic elasto-plastic model,which takes nonlinear kinematic and isotropic hardening into account,is presented.Three factors are investigated to determine the effect on cutting quality:radius of cutting tools,strength of materials and relative clearance in cutting.The recommendations made herein are based on the simulation results.展开更多
Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, u...Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, using the finite element method. Experimental tests are conducted on soil samples with different amounts of Portland cement. A 2-D numerical model is created and validated using the numerical modelling software, COMSOL Multiphysics 5.6 software. The study finds that the cohesion, and the angle of the internal friction of the soil samples increase significantly as a result of adding 1%, 2%, and 4% of Portland cement. The results demonstrate that the stresses and strain under the strip footing proposed decrease by 3.24% and 7.42%. Moreover, the maximum displacement also decreases by 1.47% and 2.97%, as a result of adding cements of 2% and 4%. The bearing capacity values obtained are therefore excellent, especially when using the 2% and 4% cement. The increase identified is due to the increased values of the bearing capacity factors. It is concluded that from an economic viewpoint, using 2% cement is the best option.展开更多
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b...This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.展开更多
Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However...Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However, laboratory tests of intact rock samples cannot provide information about the strength and deformation behaviors of fractured rock masses that include many fractures of varying sizes, orientations and locations. On the other hand, large-scale in situ tests of fractured rock masses are economically costly and often not practical in reality at present. Therefore, numerical modeling becomes necessary. Numerical predicting using discrete element methods(DEM) is a suitable approach for such modeling because of their advantages of explicit representations of both fractures system geometry and their constitutive behaviors of fractures, besides that of intact rock matrix. In this study, to generically determine the compressive strength of fractured rock masses, a series of numerical experiments were performed on two-dimensional discrete fracture network models based on the realistic geometrical and mechanical data of fracture systems from feld mapping. We used the UDEC code and a numerical servo-controlled program for controlling the progressive compressive loading process to avoid sudden violent failure of the models. The two loading conditions applied are similar to the standard laboratory testing for intact rock samples in order to check possible differences caused by such loading conditions. Numerical results show that the strength of fractured rocks increases with the increasing confning pressure, and that deformation behavior of fractured rocks follows elasto-plastic model with a trend of strain hardening. The stresses and strains obtained from these numerical experiments were used to ft the well-known Mohr-Coulomb(MC) and Hoek-Brown(H-B) failure criteria, represented by equivalent material properties defning these two criteria. The results show that both criteria can provide fair estimates of the compressive strengths for all tested numerical models. Parameters of the elastic deformability of fractured models during elastic deformation stages were also evaluated, and represented as equivalent Young’s modulus and Poisson’s ratio as functions of lateral confning pressure. It is the frst time that such systematic numerical predicting for strength of fractured rocks was performed considering different loading conditions, with important fndings for different behaviors of fractured rock masses, compared with testing intact rock samples under similar loading conditions.展开更多
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o...This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.展开更多
The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carri...The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carried out at different temperatures. Theexperimental results show that at room temperature or at 120 deg. Cthe AZ91D's strength decrease with the increasing amount of the rareearth elements. However, the ductility is improved. The influence of0.14/100Sb(mass fraction)on the AZ91D's strength is like that of rareearth elements(0.2/100-0.4/100)(mass fraction). Microstructure graphsdemonstrate that appropriate amount of rare earth elements(0.1/100-0.2/100)can fine AZ91D's grain and improve its ductility.展开更多
The effects of rare earth elements on the microstructure and properties ofmagnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added toAM60B and the tensile tests were carried ou...The effects of rare earth elements on the microstructure and properties ofmagnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added toAM60B and the tensile tests were carried out under different temperatures. The experimental resultsshow that at room temperature the tensile strength of AM60B can be improved with the addition ofrare earth elements. The ductility of which at room or elevated temperature (120 deg C) can also beimproved, and the ductility is to some extent in proportion with the amount of rare earth elements.The ductility at 120 deg C is better than that at room temperature. The microstructure graphsdemonstrate that appropriate amount of rare earth elements (0.1 percent-0.2 percent, mass fraction)can fine AM60B's grain and improve its ductility.展开更多
Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geom...Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con- taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu- merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and su^zestions for future study are also oresented.展开更多
Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural stren...Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural strength of a tri-floater floating foundation supporting a 2.6 MW Darrieus VAWT. Finite element models of the floating foundation were developed using space plate-beam elements. The environmental loads, such as the aerodynamic loads, static wind loads, and wave-current loads, were considered. The general strengths of the floating foundation were calculated for the normal operating case(a cut-out wind speed of 25 m s^(-1) and blade rotation of 12 r min^(-1) were used to analyze the most unfavorable loads) and an extreme case(wind speed of 40 m s^(-1) and parked blades), and the weak components of the structure were analyzed. The results show that the floating foundation meets the strength requirements and the structural stress is highest when the wave, wind, and current are in a collinear direction. The main and secondary supporting bars transmit the loads between the stand columns and the tower foundation, and their stresses are higher than those in the other components. In the actual design, these supporting bars should be strengthened. The aerodynamic loads are very important and should be considered in the structural strength analysis of the floating foundation and the floating wind turbine system.展开更多
The characteristics of deformation and strength of concrete under the plane strain condition are studied experimentally with the triaxial apparatus designed by the authors and are compared with those under the plane s...The characteristics of deformation and strength of concrete under the plane strain condition are studied experimentally with the triaxial apparatus designed by the authors and are compared with those under the plane stress condition. A formula of stress transformation between plane stress and plane strain conditions is proposed for the elasto-plastic state, and it provides a theoretical basis for simplifying nonlinear analysis and fully using the strength of concrete.展开更多
An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure cr...An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure criterion, the failure index was introduced to characterize the degree of stress components close to their corresponding material strength. With a brief load transfer analysis, the weak fillers were prominent and further detailed discussion was performed. The maximum value among the average failure indices which were related with different stress components was filtrated to represent the failure strength of the critical surface, which is either the two curved upside surfaces or the bottom plane of the fillers for composite π joints. The tensile strength of three kinds of π joints with different material systems, configurations and lay-ups was predicted by the proposed method and corresponding experiments were conducted. Good agreements between the numerical and experimental results give evidence of the effectiveness of the proposed method. In contrast to the existed time-consuming strength prediction methods, the proposed method provides a capability of quickly assessing the failure of complex out-of-plane joints and is easy and convenient to be widely utilized in engineering.展开更多
The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transform...The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.展开更多
文摘Archean to Cenozoic mafic volcanic rocks from the North China craton are studied. They show Archean Proterozoic (Ar Pt) boundary and geochemical anomalies in Cenozoic basalts. Proterozoic mafic volcanics are enriched in most of the high field strength elements (HFSE) compared with Archean ones. Nb, Ta and Th show a distinct sequence of incompatibility in Archean and Proterozoic. The Cenozoic basalts are enriched in HFSE and Ni and their REEs are strongly differentiated with positive Eu anomalies ( δ (Eu)=1.14). The Ar Pt boundary could be related to change in oxygen fugacity and requires an increasing importance of enriched mantle source. The geochemistry of Cenozoic basalts implies a mantle source similar to OIB. Residuum from subducting partial melting of old basaltic oceanic crust and continental crust is likely to contribute to the formation of the enriched mantle.
文摘The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.
文摘A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, the dense grids are adjusted accordingly. Four cases with different loads are compared, thus the influences of different loads on the section are analyzed. Numerical results show that the maximum stress of the section is lower than the strength limit of the material, and the section will not be broken with the static loads.
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
基金Supported by the National Natural Science Foundation of China (40318002)
文摘The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.
文摘By means of finite element analysis methods calculated the stress, strainand displacement of the belt teeth and analysisied the factors such as load distribution,specific property coefficient of material and temperature variation, which influence the fatigue strength of the belt teeth..
基金Funded by the National Natural Science Foundation of China(No.51574201)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(KLGP2015K006)the Scientific and Technical Youth Innovation Group(Southwest Petroleum University)(2015CXTD05)
文摘A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.
文摘This paper presents a constitutive framework for finite element analysis of the truck beam end cutting process.For this purpose,a finite strain anisotropic elasto-plastic model,which takes nonlinear kinematic and isotropic hardening into account,is presented.Three factors are investigated to determine the effect on cutting quality:radius of cutting tools,strength of materials and relative clearance in cutting.The recommendations made herein are based on the simulation results.
文摘Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, using the finite element method. Experimental tests are conducted on soil samples with different amounts of Portland cement. A 2-D numerical model is created and validated using the numerical modelling software, COMSOL Multiphysics 5.6 software. The study finds that the cohesion, and the angle of the internal friction of the soil samples increase significantly as a result of adding 1%, 2%, and 4% of Portland cement. The results demonstrate that the stresses and strain under the strip footing proposed decrease by 3.24% and 7.42%. Moreover, the maximum displacement also decreases by 1.47% and 2.97%, as a result of adding cements of 2% and 4%. The bearing capacity values obtained are therefore excellent, especially when using the 2% and 4% cement. The increase identified is due to the increased values of the bearing capacity factors. It is concluded that from an economic viewpoint, using 2% cement is the best option.
文摘This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.
文摘Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However, laboratory tests of intact rock samples cannot provide information about the strength and deformation behaviors of fractured rock masses that include many fractures of varying sizes, orientations and locations. On the other hand, large-scale in situ tests of fractured rock masses are economically costly and often not practical in reality at present. Therefore, numerical modeling becomes necessary. Numerical predicting using discrete element methods(DEM) is a suitable approach for such modeling because of their advantages of explicit representations of both fractures system geometry and their constitutive behaviors of fractures, besides that of intact rock matrix. In this study, to generically determine the compressive strength of fractured rock masses, a series of numerical experiments were performed on two-dimensional discrete fracture network models based on the realistic geometrical and mechanical data of fracture systems from feld mapping. We used the UDEC code and a numerical servo-controlled program for controlling the progressive compressive loading process to avoid sudden violent failure of the models. The two loading conditions applied are similar to the standard laboratory testing for intact rock samples in order to check possible differences caused by such loading conditions. Numerical results show that the strength of fractured rocks increases with the increasing confning pressure, and that deformation behavior of fractured rocks follows elasto-plastic model with a trend of strain hardening. The stresses and strains obtained from these numerical experiments were used to ft the well-known Mohr-Coulomb(MC) and Hoek-Brown(H-B) failure criteria, represented by equivalent material properties defning these two criteria. The results show that both criteria can provide fair estimates of the compressive strengths for all tested numerical models. Parameters of the elastic deformability of fractured models during elastic deformation stages were also evaluated, and represented as equivalent Young’s modulus and Poisson’s ratio as functions of lateral confning pressure. It is the frst time that such systematic numerical predicting for strength of fractured rocks was performed considering different loading conditions, with important fndings for different behaviors of fractured rock masses, compared with testing intact rock samples under similar loading conditions.
基金financial support from the National Key Sci-Tech Major Special Item(No.2011ZX05026-001)Program for Changjiang Scholars and Innovative Research Team in University(IRT1086)
文摘This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.
基金[The work is financially supported by "973" key foundation of China (No. 2000067202).]
文摘The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carried out at different temperatures. Theexperimental results show that at room temperature or at 120 deg. Cthe AZ91D's strength decrease with the increasing amount of the rareearth elements. However, the ductility is improved. The influence of0.14/100Sb(mass fraction)on the AZ91D's strength is like that of rareearth elements(0.2/100-0.4/100)(mass fraction). Microstructure graphsdemonstrate that appropriate amount of rare earth elements(0.1/100-0.2/100)can fine AZ91D's grain and improve its ductility.
基金The program is financially supported by National Key Basic Research and Development Program of China "973"(No 2000067202).]
文摘The effects of rare earth elements on the microstructure and properties ofmagnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added toAM60B and the tensile tests were carried out under different temperatures. The experimental resultsshow that at room temperature the tensile strength of AM60B can be improved with the addition ofrare earth elements. The ductility of which at room or elevated temperature (120 deg C) can also beimproved, and the ductility is to some extent in proportion with the amount of rare earth elements.The ductility at 120 deg C is better than that at room temperature. The microstructure graphsdemonstrate that appropriate amount of rare earth elements (0.1 percent-0.2 percent, mass fraction)can fine AM60B's grain and improve its ductility.
文摘Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con- taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu- merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and su^zestions for future study are also oresented.
基金supported by the National Natural Science Foundation of China(No.51579176)the Natural Science Foundation of Tianjin(No.16JCYBJC21200)the Research Fund of the State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(No.1501)
文摘Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural strength of a tri-floater floating foundation supporting a 2.6 MW Darrieus VAWT. Finite element models of the floating foundation were developed using space plate-beam elements. The environmental loads, such as the aerodynamic loads, static wind loads, and wave-current loads, were considered. The general strengths of the floating foundation were calculated for the normal operating case(a cut-out wind speed of 25 m s^(-1) and blade rotation of 12 r min^(-1) were used to analyze the most unfavorable loads) and an extreme case(wind speed of 40 m s^(-1) and parked blades), and the weak components of the structure were analyzed. The results show that the floating foundation meets the strength requirements and the structural stress is highest when the wave, wind, and current are in a collinear direction. The main and secondary supporting bars transmit the loads between the stand columns and the tower foundation, and their stresses are higher than those in the other components. In the actual design, these supporting bars should be strengthened. The aerodynamic loads are very important and should be considered in the structural strength analysis of the floating foundation and the floating wind turbine system.
文摘The characteristics of deformation and strength of concrete under the plane strain condition are studied experimentally with the triaxial apparatus designed by the authors and are compared with those under the plane stress condition. A formula of stress transformation between plane stress and plane strain conditions is proposed for the elasto-plastic state, and it provides a theoretical basis for simplifying nonlinear analysis and fully using the strength of concrete.
基金Funded by the National Natural Science Foundation of China(Nos.11372020 and 10902004)
文摘An average failure index method based on accurate FEA was proposed for the tensile strength prediction of composite out-of-plane adhesive-bonded π joints. Based on the simple and independent maximum stress failure criterion, the failure index was introduced to characterize the degree of stress components close to their corresponding material strength. With a brief load transfer analysis, the weak fillers were prominent and further detailed discussion was performed. The maximum value among the average failure indices which were related with different stress components was filtrated to represent the failure strength of the critical surface, which is either the two curved upside surfaces or the bottom plane of the fillers for composite π joints. The tensile strength of three kinds of π joints with different material systems, configurations and lay-ups was predicted by the proposed method and corresponding experiments were conducted. Good agreements between the numerical and experimental results give evidence of the effectiveness of the proposed method. In contrast to the existed time-consuming strength prediction methods, the proposed method provides a capability of quickly assessing the failure of complex out-of-plane joints and is easy and convenient to be widely utilized in engineering.
基金financially supported by the National Natural Science Foundation of China (No.51474031)
文摘The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.