The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara...The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.展开更多
The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the...The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.展开更多
The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UC...The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UCS values.However,these tests are generally tedious,time-consuming,expensive,and sometimes impossible to perform due to difficult rock conditions.Therefore,several empirical equations have been developed to estimate the UCS from results of index and physical tests of rock.Nevertheless,numerous empirical models available in the literature often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.This study evaluates estimation of UCS of rocks from several empirical equations.The study uses data of point load strength(Is(50)),Schmidt rebound hardness(SRH),block punch index(BPI),effective porosity(n) and density(ρ)as inputs to empirically estimate the UCS.The estimated UCS values from empirical equations are compared with experimentally obtained or measured UCS values,using statistical analyses.It shows that the reliability of UCS estimated from empirical equations depends on the quality of data used to develop the equations,type of input data used in the equations,and the quality of input data from index or physical tests.The results show that the point load strength(Is(50)) is the most reliable index for estimating UCS among the five types of tests evaluated.Because of type-specific nature of rock,restricting the use of empirical equations to the similar rock types for which they are developed is one of the measures to ensure satisfactory prediction performance of empirical equations.展开更多
In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dech...In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day.展开更多
In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sed...In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
The purpose of this study was to clarify the relationships between results of index tests and uniaxial compressive strength (UCS) in hydrothermally altered soft rocks of the Upper Miocene, which are typical of the sof...The purpose of this study was to clarify the relationships between results of index tests and uniaxial compressive strength (UCS) in hydrothermally altered soft rocks of the Upper Miocene, which are typical of the soft rock found in northeastern Hokkaido, Japan. Index tests were performed using point load testing machine and needle penetrometer with irregular lump specimens under forced-dry, forced-wet, and natural-moist states. The relationships between irregular lump point load strength (IPLS) index and UCS, and needle penetration (NP) index and UCS were “UCS = approximately 19 IPLS index” and “UCS = 0.848 (NP index)0.619”, respectively, in soft rocks with a UCS below 25 MPa. These relationships could be applied to on-site tests of rocks with natural moisture content. The UCS could be calculated from IPLS and NP tests on soft rocks only when UCS was below 25 MPa, using the equations obtained as a result of this study.展开更多
An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure...An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.展开更多
Chandler proposed the intrinsic strength line to correlate the undrained shear strength of samples one-dimensionally consolidated from slurry with the void index proposed by Burland. The undrained shear strength on th...Chandler proposed the intrinsic strength line to correlate the undrained shear strength of samples one-dimensionally consolidated from slurry with the void index proposed by Burland. The undrained shear strength on the intrinsic strength line is different from the remolded undrained shear strength that is an important parameter for design and construction of land reclamation. The void index is used in this study for normalizing the remolded strength behavior of dredged deposits. A quantitative relationship between remolded undrained shear strength and void index is established based on extensive data of dredged deposits available from sources of literature. Furthermore, the normalized remolded undrained shear strength is compared with intrinsic strength line. The comparison result indicates that the ratio of undrained shear strength on the intrinsic strength line over remolded undrained shear strength increases with an increase in applied consolidated stress.展开更多
The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along ...The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along open joints and rotation of rock blocks. In massive, veined and moderately jointed rock in which rock blocks cannot form without failure of intact rock, the approach to obtain HB parameters must be modified. Typical situations when these modifications are required include the design of pillars, excavation and cavern stability, strainburst potential assessment, and tunnel support in deep underground conditions (around σ1/σci > 0.15, where σ1 is the major principal compressive stress and σci is the unconfined compressive strength of the homogeneous rock) in hard brittle rocks with GSI ≥ 65. In this article, the strength of massive to moderately jointed hard rock masses is investigated, and an approach is presented to estimate the rock mass strength envelope using laboratory data from uniaxial and triaxial compressive strength tests without reliance on the HB-GSI equations. The data from tests on specimens obtained from massive to moderately jointed heterogeneous (veined) rock masses are used to obtain the rock and rock mass strengths at confining stress ranges that are relevant for deep tunnelling and mining;and a methodology is presented for this purpose from laboratory data alone. By directly obtaining the equivalent HB rock mass strength envelope for massive to moderately jointed rock from laboratory tests, the HB-GSI rock mass strength estimation approach is complemented for conditions where the GSIequations are not applicable. Guidance is also provided on how to apply the proposed approach when laboratory test data are not or not yet available.展开更多
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s...Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.展开更多
The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength r...The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.展开更多
By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental...By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.展开更多
Using the NCEP/NCAR reanalysis dataset from 1959-2004, the location and strength of the ITCZ (Inter-Tropical Convergence Zone), as well as their relations with typhoons in the northwestern Pacific were studied. It w...Using the NCEP/NCAR reanalysis dataset from 1959-2004, the location and strength of the ITCZ (Inter-Tropical Convergence Zone), as well as their relations with typhoons in the northwestern Pacific were studied. It was found that the pentad location and strength of the ITCZ had close relations with the typhoon frequency. Higher latitude location or strengthened ITCZ were found to be favorable for the occurrence of typhoons over the Northwestern Pacific. An index was defined for ascertaining the location of the ITCZ. It was found that the index defined with the maximum value of pentad and monthly meridional shear of zonal wind speed could better describe the location of ITCZ than another index defined with the maximum value of convergence. Correlation analysis between the index of ITCZ and the maximum cloud cover in the tropics showed that there were close relations between the ITCZ determined by the index and the maximum tropical cloud belt. The strength index of an ITCZ was defined as the zonal wind speed difference at latitudes south and north of the ITCZ. It was found that there are close relations between the ITCZ intensity and typhoon occurrence in the South China Sea [10°N-20°N, 100°E-120°E] and regions east of the Philippines and near the Mariana Islands[5°N-20°N, 127.5°-150°E].展开更多
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models...Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.展开更多
The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to est...The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed.展开更多
A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as...A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.展开更多
A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experiment...A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experimental castings have the following dimensions 180 mm x 180 mm x 190 mm.The achieved as-cast Charpy impact strengths were as follows:17 J (RT),16 J (-20℃) and 11 J (-40℃).The foundry process,the chemical composition and the microstructure of this experimental casting are compared to the ones of various examples in order to show the detrimental effects of residual elements,microshrinkage and microcarbide on the impact properties.Finally,quality index empirical models (based on casting chemical compositions) are used to analyse the impact tests results.This paper illustrates that an adequate nodule count can contribute to reducing the detrimental effects of the residual elements and microsegregation.展开更多
The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM ...The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3901403 and 2023YFC3007203).
文摘The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.
文摘The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.
文摘The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UCS values.However,these tests are generally tedious,time-consuming,expensive,and sometimes impossible to perform due to difficult rock conditions.Therefore,several empirical equations have been developed to estimate the UCS from results of index and physical tests of rock.Nevertheless,numerous empirical models available in the literature often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.This study evaluates estimation of UCS of rocks from several empirical equations.The study uses data of point load strength(Is(50)),Schmidt rebound hardness(SRH),block punch index(BPI),effective porosity(n) and density(ρ)as inputs to empirically estimate the UCS.The estimated UCS values from empirical equations are compared with experimentally obtained or measured UCS values,using statistical analyses.It shows that the reliability of UCS estimated from empirical equations depends on the quality of data used to develop the equations,type of input data used in the equations,and the quality of input data from index or physical tests.The results show that the point load strength(Is(50)) is the most reliable index for estimating UCS among the five types of tests evaluated.Because of type-specific nature of rock,restricting the use of empirical equations to the similar rock types for which they are developed is one of the measures to ensure satisfactory prediction performance of empirical equations.
基金Henan Science and Technology Key Project,Research on Key Technology and Performance of Polyaluminum Chloride Residue(PACR)Concrete Preparation(202102310253)National Natural Science Foundation Project“Carbonization Strengthening of Recycled Coarse Aggregate and Its Influence on Mechanical Properties of Recycled Concrete Materials and Structures”(U1904188).
文摘In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day.
文摘In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
文摘The purpose of this study was to clarify the relationships between results of index tests and uniaxial compressive strength (UCS) in hydrothermally altered soft rocks of the Upper Miocene, which are typical of the soft rock found in northeastern Hokkaido, Japan. Index tests were performed using point load testing machine and needle penetrometer with irregular lump specimens under forced-dry, forced-wet, and natural-moist states. The relationships between irregular lump point load strength (IPLS) index and UCS, and needle penetration (NP) index and UCS were “UCS = approximately 19 IPLS index” and “UCS = 0.848 (NP index)0.619”, respectively, in soft rocks with a UCS below 25 MPa. These relationships could be applied to on-site tests of rocks with natural moisture content. The UCS could be calculated from IPLS and NP tests on soft rocks only when UCS was below 25 MPa, using the equations obtained as a result of this study.
基金Project(11C26211304055) supported by Small to Medium Enterprise Innovation Fund
文摘An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.
文摘Chandler proposed the intrinsic strength line to correlate the undrained shear strength of samples one-dimensionally consolidated from slurry with the void index proposed by Burland. The undrained shear strength on the intrinsic strength line is different from the remolded undrained shear strength that is an important parameter for design and construction of land reclamation. The void index is used in this study for normalizing the remolded strength behavior of dredged deposits. A quantitative relationship between remolded undrained shear strength and void index is established based on extensive data of dredged deposits available from sources of literature. Furthermore, the normalized remolded undrained shear strength is compared with intrinsic strength line. The comparison result indicates that the ratio of undrained shear strength on the intrinsic strength line over remolded undrained shear strength increases with an increase in applied consolidated stress.
基金Rio Tinto for sponsoring much of the work outlined in this article through the Rio Tinto Centre for Underground Mine Construction (an affiliate of CEMI)the financial contributions of NSERC (Natural Sciences and Engineering Research Council of Canada)
文摘The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along open joints and rotation of rock blocks. In massive, veined and moderately jointed rock in which rock blocks cannot form without failure of intact rock, the approach to obtain HB parameters must be modified. Typical situations when these modifications are required include the design of pillars, excavation and cavern stability, strainburst potential assessment, and tunnel support in deep underground conditions (around σ1/σci > 0.15, where σ1 is the major principal compressive stress and σci is the unconfined compressive strength of the homogeneous rock) in hard brittle rocks with GSI ≥ 65. In this article, the strength of massive to moderately jointed hard rock masses is investigated, and an approach is presented to estimate the rock mass strength envelope using laboratory data from uniaxial and triaxial compressive strength tests without reliance on the HB-GSI equations. The data from tests on specimens obtained from massive to moderately jointed heterogeneous (veined) rock masses are used to obtain the rock and rock mass strengths at confining stress ranges that are relevant for deep tunnelling and mining;and a methodology is presented for this purpose from laboratory data alone. By directly obtaining the equivalent HB rock mass strength envelope for massive to moderately jointed rock from laboratory tests, the HB-GSI rock mass strength estimation approach is complemented for conditions where the GSIequations are not applicable. Guidance is also provided on how to apply the proposed approach when laboratory test data are not or not yet available.
文摘Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.
基金Supported by the National Mega-Project of Key Technology R&D Program in the 11th Five-Year Plan of China (No.2006BAJ04A04)the Education Department of Liaoning Province, China (No. 2008282)
文摘The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions.
基金Project(202045007)supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.
基金support from the Institute of Typhoon,Shanghai,and the National Natural Science Foundation(40676012)
文摘Using the NCEP/NCAR reanalysis dataset from 1959-2004, the location and strength of the ITCZ (Inter-Tropical Convergence Zone), as well as their relations with typhoons in the northwestern Pacific were studied. It was found that the pentad location and strength of the ITCZ had close relations with the typhoon frequency. Higher latitude location or strengthened ITCZ were found to be favorable for the occurrence of typhoons over the Northwestern Pacific. An index was defined for ascertaining the location of the ITCZ. It was found that the index defined with the maximum value of pentad and monthly meridional shear of zonal wind speed could better describe the location of ITCZ than another index defined with the maximum value of convergence. Correlation analysis between the index of ITCZ and the maximum cloud cover in the tropics showed that there were close relations between the ITCZ determined by the index and the maximum tropical cloud belt. The strength index of an ITCZ was defined as the zonal wind speed difference at latitudes south and north of the ITCZ. It was found that there are close relations between the ITCZ intensity and typhoon occurrence in the South China Sea [10°N-20°N, 100°E-120°E] and regions east of the Philippines and near the Mariana Islands[5°N-20°N, 127.5°-150°E].
文摘Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.
基金supported by the National Natural Science Foundation of China (Grant No. 41002112)Key teaching construction projects of Wuhan Institution of Technology (J201403)+2 种基金the Chinese Postdoctoral Science Foundation (Grant No. 2017M621783, 2018T110527)the International Postdoctoral Exchange Fellowship Program by China Postdoctoral Council (Year 2017)the Startup Foundation for Introducing Talent of NUIST (Grant No. 2017r045)
文摘The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed.
基金supported by the National Basic Research Program of China (973Program) under Grant No. 2010CB731800the National Natural Science Foundation of China under Grant No. 60934003 and 61074065the Key Project for Natural Science Research of Hebei Education Departmentunder Grant No. ZD200908
文摘A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.
文摘A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experimental castings have the following dimensions 180 mm x 180 mm x 190 mm.The achieved as-cast Charpy impact strengths were as follows:17 J (RT),16 J (-20℃) and 11 J (-40℃).The foundry process,the chemical composition and the microstructure of this experimental casting are compared to the ones of various examples in order to show the detrimental effects of residual elements,microshrinkage and microcarbide on the impact properties.Finally,quality index empirical models (based on casting chemical compositions) are used to analyse the impact tests results.This paper illustrates that an adequate nodule count can contribute to reducing the detrimental effects of the residual elements and microsegregation.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51871043)supported by the National Natural Science Foundation of ChinaProject(N180212010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.