期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Failure behavior and strength model of blocky rock mass with and without rockbolts
1
作者 Chun Zhu Xiansen Xing +4 位作者 Manchao He Zhicheng Tang Feng Xiong Zuyang Ye Chaoshui Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期747-762,共16页
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme... To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks. 展开更多
关键词 Blocky rock mass Rockbolt ground support Uniaxial compression test Failure mechanism Uniaxial compressive strength model
下载PDF
Strength Model of Soda Residue Soil Considering Consolidation Stress and Structural Influence
2
作者 GONG Xiaolong WANG Yuanzhan CHEN Tong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1216-1226,共11页
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s... Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions. 展开更多
关键词 soda residue soil triaxial test strength model soil structure consolidation stress
下载PDF
Improved mechanical properties and strengthening mechanism with the altered precipitate orientation in magnesium alloys 被引量:9
3
作者 Y.J.Wan Y.Zeng +5 位作者 Y.C.Dou D.C.Hu X.Y.Qian Q.Zeng K.X.Sun G.F.Quan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1256-1267,共12页
Aging prior to twinning deformation was proposed to alter the precipitate orientation of the plate-shapedβ-MgAlfrom(0002)basal planes(named basal plates)to■prismatic planes(named prismatic plates)in AZ31 Mg alloy.Th... Aging prior to twinning deformation was proposed to alter the precipitate orientation of the plate-shapedβ-MgAlfrom(0002)basal planes(named basal plates)to■prismatic planes(named prismatic plates)in AZ31 Mg alloy.The experimental results showed that the compressive yield strength(CYS)of the sample containing prismatic plates increased 40 MPa and the compression ratio raised by 22%compared to that containing basal plates.The underlying strengthening mechanism was analyzed via a yield strengthen(YS)model with a function of grain size,precipitate characters(size,oritention,fraction)and Schmid factor(SF).It revealed that the improvement of CYS was mainly attributed to the altered precipitate orientation and refined grain size produced by twinning deformation.Particularly,the prismatic plates always have a stronger hardening effect on basal slip than basal plates under the same varites of precipitate diameter and SF.Besides,the decreased CRSS ratio of prismatic slip to basal slip revealed that the activity of non-basal slip in Mg alloy might be enhanced.More activated slip systems provided more mobile dislocations,contributing to the large compression ratio of the Mg rolled sheet with prismatic plates. 展开更多
关键词 Precipitate orientation Precipitation strengthening Grain boundary strengthening Yield strength model
下载PDF
Unified strength model based on the Hoek-Brown failure criterion for fibre-reinforced polymer-confined pre-damaged concrete columns with circular and square cross sections 被引量:6
4
作者 ZHANG Yang LU Zhi-fang CAO Yu-gui 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3807-3820,共14页
Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the exi... Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy. 展开更多
关键词 FRP-confined concrete load-damaged fire-damaged unified strength model Hoek-Brown failure criterion
下载PDF
The temperature-dependent fracture strength model for ultra-high temperature ceramics 被引量:14
5
作者 Weiguo Li Fan Yang Daining Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期235-239,共5页
Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of e... Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperaturedependent fracture strength model is then developed for ultrahigh temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results. 展开更多
关键词 Ultra-high temperature ceramics · Equivalent energy · Critical failure energy · strength model
下载PDF
Strength softening models of soil and its application in rainfall-induced landslide simulation 被引量:3
6
作者 Zhendong Fu Jiachun Li 《Theoretical & Applied Mechanics Letters》 CAS 2013年第4期23-28,共6页
In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. Ac... In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. According to the ratio of two time scales available, the model can be classified into three categories, i.e., instant softening model, delay softening model, and coupling softening model. Corresponding evolution functions are specified to represent these kinds of softening processes and then applied to simulate landslide of homogeneous slopes triggered by rainfall, therefrom, useful conclusions can be drawn in the end. 展开更多
关键词 homogeneous slope numerical simulation strength softening model rainfall-induced landslide geological disaster
下载PDF
An improved method to assess the required strength of cemented backfill in underground stopes with an open face 被引量:19
7
作者 Li Li Michel Aubertin 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期549-558,共10页
Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore ... Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore dilution. To this end, the backfill in a stope must possess a minimum strength to remain self-standing during mining of an adjacent stope. This required strength is often estimated using a solution proposed by Mitchell and co-workers, which was based on a limit equilibrium analysis of a wedge exposed by the open face. In this paper, three dimensional numerical simulations have been performed to assess the behavior of the wedge model. A new limit equilibrium solution is proposed, based on the backfill displacements obtained from the simulations. Comparisons are made between the proposed solution and experimental and numerical modeling results. Compared with the previous solution, a better agreement is obtained between the new solution and experimental results for the required cohesion and factor of safety. For large scale(field) conditions, the results also show that the required strength obtained from the proposed solution corresponds quite well to the simulated backfill response. 展开更多
关键词 Underground mines Backfill Required strength Analytical solutions Numerical modeling Mitchell's solution
下载PDF
Fatigue reliability based on residual strength model with hybrid uncertain parameters 被引量:2
8
作者 Jun Wang Zhi-Ping Qiu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期112-117,共6页
The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model. By solving the non-probabilistic setbased reliability problem and analyzing the reliabi... The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model. By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness, the fatigue reliability with hybrid parameters can be obtained. The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters. A comparison among the presented hybrid model, non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples. The results show that the presented hybrid model, which can ensure structural security, is effective and practical. 展开更多
关键词 Fatigue reliability Residual strength Ran- dom model Non-probabilistic set-theoretic model Hybrid model
下载PDF
Shear strength criteria for rock,rock joints,rockfill and rock masses:Problems and some solutions 被引量:45
9
作者 Nick Barton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期249-261,共13页
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece... Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected. 展开更多
关键词 Rock masses Critical state Rock joints Shear strength Non-linear friction Cohesion Dilation Scale effects Numerical modelling Stress transforms
下载PDF
Selection of regression models for predicting strength and deformability properties of rocks using GA 被引量:9
10
作者 Manouchehrian Amin Sharifzadeh Mostafa +1 位作者 Hamidzadeh Moghadam Rasoul Nouri Tohid 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期492-498,共7页
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models... Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy. 展开更多
关键词 Regression models Genetic algorithms Heuristics Uniaxial compressive strength Modulus of elasticity Rock index property
下载PDF
Assessment of composite failure and ultimate strength without experiment on composite 被引量:6
11
作者 Zheng-Ming Huang Ling Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期569-588,共20页
This paper attempts to estimate the ultimate strength of a laminated composite only based on its con- stituent properties measured independently. Three important issues involved have been systematically addressed, i.e... This paper attempts to estimate the ultimate strength of a laminated composite only based on its con- stituent properties measured independently. Three important issues involved have been systematically addressed, i.e., stress calculation for the constituent fiber and matrix materials, failure detection for the lamina and laminate upon the internal stresses in their constituents, and input data determination of the constituents from monolithic measurements. There are three important factors to influence the accuracy of the strength prediction. One is the stress concentration factor (SCF) in the matrix. Another is matrix plasticity. The third is thermal residual stresses in the constituents. It is these three factors, however, that have not been sufficiently well realized in the composite community. One can easily find out the elastic and strength parameters of a great many laminae and laminates in the current literature. Unfortunately, necessary information to determine the SCF, the matrix plasticity, and the thermal residual stresses of the composites is rare or incomplete. A useful design methodology is demonstrated in the paper. 展开更多
关键词 Composite · strength · Stress concentrations ·Plasticity · Residual stress · Bridging model
下载PDF
Susceptibility-weighted imaging is suitable for evaluating signal strength in different brain regions of a rabbit model of acute hemorrhagic anemia 被引量:2
12
作者 Jun Xia Ni Xie +3 位作者 Anyu Yin Guozhao Teng Fan Lin Yi Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期990-992,共3页
Acute hemorrhagic anemia can decrease blood flow and oxygen supply to brain, and affect its physiological function. While detecting changes in brain function in patients with acute hemorrhagic anemia is helpful for pr... Acute hemorrhagic anemia can decrease blood flow and oxygen supply to brain, and affect its physiological function. While detecting changes in brain function in patients with acute hemorrhagic anemia is helpful for preventing neurological complications and evaluating therapeutic effects, clinical changes in the nervous systems of these patients have not received much attention. In part, this is because current techniques can only indirectly detect changes in brain function following onset of anemia, which leads to lags between real changes in brain function and their detection. 展开更多
关键词 Susceptibility-weighted imaging is suitable for evaluating signal strength in different brain regions of a rabbit model of acute hemorrhagic anemia Figure
下载PDF
A New Modification to Shear Lag Model as Applied to Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites
13
作者 Jiang, ZH Lian, JS +1 位作者 Yang, DZ Dong, SL 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第6期516-522,共7页
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime... A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models. 展开更多
关键词 SiC A New Modification to Shear Lag Model as Applied to Stiffness and Yield strength of Short Fiber Reinforced Metal Matrix Composites
全文增补中
Stability analyses of vertically exposed cemented backfill:A revisit to Mitchell's physical model tests 被引量:13
14
作者 Liu Guangsheng Li Li +1 位作者 Yang Xiaocong Guo Lijie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1135-1144,共10页
Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfi... Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill. 展开更多
关键词 Cemented backfill Required strength Mitchell Physical model tests Numerical modeling FLAC3D
下载PDF
An Unstructured Finite Volume Method for Impact Dynamics of a Thin Plate 被引量:1
15
作者 Weidong Chen Yanchun Yu 《Journal of Marine Science and Application》 2012年第4期478-485,共8页
The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate... The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data 展开更多
关键词 unstructured finite volume method structural impact dynamics large deformation strength models state equations
下载PDF
Constitutive models and salt migration mechanisms of saline frozen soil and the-state-of-the-practice countermeasures in cold regions
16
作者 YuanMing Lai ZheMin You Jing Zhang 《Research in Cold and Arid Regions》 CSCD 2021年第1期1-17,共17页
A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents... A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles. 展开更多
关键词 frozen saline soil strength criteria and constitutive models salt migration and crystallization multiple field coupling model COUNTERMEASURES
下载PDF
Effect of Fiber Volume Fraction on Longitudinal Tensile Properties of SiCf/Ti-6Al-4V Composites
17
作者 娄菊红 YANG Yanqing LIU Shenquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期278-283,共6页
The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expresse... The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength. 展开更多
关键词 composites Monte Carlo finite element modelling longitudinal tensile strength fiber volume fraction
下载PDF
Structural Reliability Analysis Method in Fuzzy Environment
18
作者 FANG Yufeng SONG Bifeng 《International Journal of Plant Engineering and Management》 2000年第3期89-95,共7页
In this paper, the fuzzy-set-based structural possibility theory is investigated, and this theory can be used to deal with the subjective uncertainties in the design of engineering structures. Furthermore, a comprehen... In this paper, the fuzzy-set-based structural possibility theory is investigated, and this theory can be used to deal with the subjective uncertainties in the design of engineering structures. Furthermore, a comprehensive model of structural safety assessment, which can merge subjective uncertainties with objective uncertainties, is presented. In this model, the fuzziness of stress-strength inference model, safety margin functions of single or multiple limit-state, structural failure state and the final assessment result are taken into account. This continuous model can be transformed into an equivalent model of probability-based and solved by the present structural reliability analysis method and parallel algorithm. An example is given to show the main idea of the method presented in this paper. 展开更多
关键词 fuzzy strength inference model fuzzy structural reliability structural reliablity analysis method
下载PDF
Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars 被引量:1
19
作者 Linh Van Hong BUI Phuoc Trong NGUYEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第7期843-857,共15页
In this study,finite element(FE)analysis is utilized to investigate the shear capacity of reinforced concrete(RC)beams strengthened with embedded through-section(ETS)bars.Effects of critical variables on the beam shea... In this study,finite element(FE)analysis is utilized to investigate the shear capacity of reinforced concrete(RC)beams strengthened with embedded through-section(ETS)bars.Effects of critical variables on the beam shear strength,including the compressive strength of concrete,stiffness ratio between ETS bars and steel stirrups,and use of ETS strengthening system alone,are parametrically investigated.A promising method based on the bond mechanism between ETS strengthening and concrete is then proposed for predicting the shear resistance forces of the strengthened beams.An expression for the maximum bond stress of the ETS bars to concrete is developed.This new expression eliminates the difficulty in the search and selection of appropriate bond parameters from adhesion tests.The results obtained from the FE models and analytical models are validated by comparison with those measured from the experiments.Consequently,the model proposed in this study demonstrates better performance and more accuracy for prediction of the beam shear-carrying capacity than those of existing models.The results obtained from this study can also serve researchers and engineers in selection of the proper shear strength models for design of ETS-strengthened RC beams. 展开更多
关键词 embedded through-section strengthening fiber-reinforced polymer finite element shear strength model bond mechanism
原文传递
Development of deep neural network model to predict the compressive strength of FRCM confined columns
20
作者 Khuong LE-NGUYEN Quyen Cao MINH +1 位作者 Afaq AHMAD Lanh Si HO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第10期1213-1232,共20页
The present study describes a reliability analysis of the strength model for predicting concrete columns confinement influence with Fabric-Reinforced Cementitious Matrix(FRCM).through both physical models and Deep Neu... The present study describes a reliability analysis of the strength model for predicting concrete columns confinement influence with Fabric-Reinforced Cementitious Matrix(FRCM).through both physical models and Deep Neural Network model(artificial neural network(ANN)with double and triple hidden layers).The database of 330 samples collected for the training model contains many important parameters,i.e.,section type(circle or square),corner radius rc,unconfined concrete strength fco,thickness nt,the elastic modulus of fiber Ef,the elastic modulus of mortar Em.The results revealed that the proposed ANN models well predicted the compressive strength of FRCM with high prediction accuracy.The ANN model with double hidden layers(APDL-1)was shown to be the best to predict the compressive strength of FRCM confined columns compared with the ACI design code and five physical models.Furthermore,the results also reveal that the unconfined compressive strength of concrete,type of fiber mesh for FRCM,type of section,and the corner radius ratio,are the most significant input variables in the efficiency of FRCM confinement prediction.The performance of the proposed ANN models(including double and triple hidden layers)had high precision with R higher than 0.93 and RMSE smaller than 0.13,as compared with other models from the literature available. 展开更多
关键词 FRCM deep neural networks confinement effect strength model confined concrete
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部