The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The resear...The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.展开更多
The strength and elongation to fracture of spray deposited Al-Si-Pb alloys were studied as a function of lead content, silicon content, and distance from the centre to periphery of the deposit. It is found that the ul...The strength and elongation to fracture of spray deposited Al-Si-Pb alloys were studied as a function of lead content, silicon content, and distance from the centre to periphery of the deposit. It is found that the ultimate tensile strength, proof stress and elongation to fracture decrease, linearly and exponentially, with the increase in lead content and porosity of the deposit, respectively. Both the strengths and elongation to fracture linearly increase with increasing distance from the centre to periphery of the deposit. The ultimate tensile strength and proof stress are higher at a higher silicon content and they have a linear relationship with the hardness of the deposit.展开更多
The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced lo...The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.展开更多
In this paper, firstly we describe the piracy problem of embedded products. Then we formulate the security features of anti-piracy embedded products. Finally we prove that the anti-piracy measure using encryption of e...In this paper, firstly we describe the piracy problem of embedded products. Then we formulate the security features of anti-piracy embedded products. Finally we prove that the anti-piracy measure using encryption of embedded products may mitigate the security strength.展开更多
In order to study of adhesive which is applicable to the production of high strength four layer composite corrugated board,the composite corrugated medium was respectively coated with cassava starch adhesive,environme...In order to study of adhesive which is applicable to the production of high strength four layer composite corrugated board,the composite corrugated medium was respectively coated with cassava starch adhesive,environmental-friendly modified water glass binder,CP-88 starch adhesive,polyvinyl alcohol adhesive and polyvinyl acetate adhesive,then the edgewise crush resistance and flat crush resistance contrast experiment on produced corrugated board samples was tested.The experiment results demonstrated that the produced corrugated board with environmental-friendly modified water glass binder had high edgewise crush resistance,general flat crush resistance and more economic,so the environmental-friendly modified water glass binder can be used for the production of high strength four layer composite corrugated board.展开更多
In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dech...In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day.展开更多
Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution featu...Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).展开更多
The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier...The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.展开更多
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o...This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.展开更多
A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste g...A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry.The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically.The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time.The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process.Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.展开更多
The ultra-high strength Cu-20Ni-20 Mn alloy was prepared by vacuum melting and its mechanical property and corrosion behavior were investigated. After thermomechanical treatment, the alloy exhibited an ultra-high tens...The ultra-high strength Cu-20Ni-20 Mn alloy was prepared by vacuum melting and its mechanical property and corrosion behavior were investigated. After thermomechanical treatment, the alloy exhibited an ultra-high tensile strength of 1204 MPa and the applicable elongation of up to 6.2%. With the increasing exposure time in 3.5% Na Cl solution, the corrosion current of the alloy decreased, while the polarization resistance and the charge-transfer resistance of the corrosion surface increased. The corrosion products formed on the surface of the alloy exposed for 1 d, and further corrosion made the corrosion product layer much dense, increasing the corrosion resistance and protecting the alloy from further corrosion.展开更多
In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test pr...In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production.展开更多
Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstru...Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy ( SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni- based γ solid solution, Ni3Al ( γ') , Ni3B, WB, CrB, and a small quantity of WC, NbC, The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.展开更多
To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced in...To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.展开更多
Sand production from loosely consolidated reservoirs is one of the critical issues in the oil and gas in-dustry all around the world that can cause many problems,such as erosion of surface and well equip-ment,sand acc...Sand production from loosely consolidated reservoirs is one of the critical issues in the oil and gas in-dustry all around the world that can cause many problems,such as erosion of surface and well equip-ment,sand accumulation in wells and operation facilities,buckling of casing in cased-hole wells and well productivity reduction.Sand production control methods include restrictive production rate,mechanical methods(slotted liner,wire-wrapped screen,pre-packed screen,frac-pack,gravel pack,high-rate water pack)and chemical consolidation that chemical method is considered for more effectiveness in sand production alleviation due to increasing formation strength in near wellbore region.This review provides an overview on the laboratory and filed operation investigations of chemical remedy for sand production.Some used chemical agents and more common laboratory tests for evaluating the chemical performance in sand consolidation are introduced in this paper.Furthermore,the results of field operations and in-jections of chemicals into the desired formation are also reported.These results show that the chemical sand consolidation is more effective in newly perforated wells which have no sand production experi-ence and have a production history of less than two years.Finally,it was concluded that the main challenges in applying this method are permeability and capillary force reduction around the wellbore and selective injection into the targeted formation layers.展开更多
This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%...This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.展开更多
This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,w...This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,which has also been obtained locally.This study first describes various trial mixtures tested as well as the specimen preparation techniques investigated that led to the final UHSC-FS mixtures.The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as making UHSC more affordable to a wider variety of applications.The final mixture design constituents were:river sand,locally available type I/II cement,silica fume,and spent FS,which was obtained from a local steel casting company.Multiple variables were investigated,such as the aggregate type and size,concrete age(7,14,and 28-days),the curing regimen,and the water-to-cement ratio(w/cm)to optimize a UHSC mixture that used local materials and FS.This systematic development revealed that heat curing the specimens in a water bath at 50 oC(122 oF)after demolding and then dry curing at 200 oC(392 oF)two days before testing with a w/cm of 0.20 at 28-days produced the highest compressive strengths.Once an optimum UHSC mixture was identified a partial replacement of the fine aggregate with FS was completed at 10%,20%,and 30%.The results showed an increase of compressive strength performance at 10%replacement,followed by no change at 20%,and finally a slight decrease at 30%.Developing this innovative material with local materials and FS ultimately produces a novel sustainable construction material,reduces the costs,and produces mechanical performance similar to prepackaged,commercially,available construction building materials.展开更多
Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that c...Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that cases exists where sand is present and may represent a significant technical problem(e.g.,the the Dina II condensate gas field).In the present study,the main factors affecting sand production in this type of reservoir are considered(mechanical properties,stress fields,production system,completion method and gas flow pattern changes during the production process).On this basis,a new liquid-solid coupled porous elasto-plastic 3D sand production model is introduced and validated through comparison with effective sand production data.The related prediction errors are found to be within 15%,which represents the necessary prerequisite for the utilization of such a model for the elaboration of sand prevention measures.展开更多
文摘The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.
文摘The strength and elongation to fracture of spray deposited Al-Si-Pb alloys were studied as a function of lead content, silicon content, and distance from the centre to periphery of the deposit. It is found that the ultimate tensile strength, proof stress and elongation to fracture decrease, linearly and exponentially, with the increase in lead content and porosity of the deposit, respectively. Both the strengths and elongation to fracture linearly increase with increasing distance from the centre to periphery of the deposit. The ultimate tensile strength and proof stress are higher at a higher silicon content and they have a linear relationship with the hardness of the deposit.
文摘The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.
文摘In this paper, firstly we describe the piracy problem of embedded products. Then we formulate the security features of anti-piracy embedded products. Finally we prove that the anti-piracy measure using encryption of embedded products may mitigate the security strength.
文摘In order to study of adhesive which is applicable to the production of high strength four layer composite corrugated board,the composite corrugated medium was respectively coated with cassava starch adhesive,environmental-friendly modified water glass binder,CP-88 starch adhesive,polyvinyl alcohol adhesive and polyvinyl acetate adhesive,then the edgewise crush resistance and flat crush resistance contrast experiment on produced corrugated board samples was tested.The experiment results demonstrated that the produced corrugated board with environmental-friendly modified water glass binder had high edgewise crush resistance,general flat crush resistance and more economic,so the environmental-friendly modified water glass binder can be used for the production of high strength four layer composite corrugated board.
基金Henan Science and Technology Key Project,Research on Key Technology and Performance of Polyaluminum Chloride Residue(PACR)Concrete Preparation(202102310253)National Natural Science Foundation Project“Carbonization Strengthening of Recycled Coarse Aggregate and Its Influence on Mechanical Properties of Recycled Concrete Materials and Structures”(U1904188).
文摘In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day.
文摘Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).
文摘The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.
基金financial support from the National Key Sci-Tech Major Special Item(No.2011ZX05026-001)Program for Changjiang Scholars and Innovative Research Team in University(IRT1086)
文摘This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.
基金financially supported by the Natural Science Foundation of China (Nos.U1610101 and 21776288)the Green Process Manufacturing Innovation Research Institute, Chinese Academy of Sciences (No.IAGM-2019-A09)the funding support from Vinnova (Dn: 2018-05293)。
文摘A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry.The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically.The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time.The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process.Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.
基金Project(2017YFB0306105)supported by the National Key R&D Program of ChinaProjects(51601227,51701241)supported by the National Natural Science Foundation of China。
文摘The ultra-high strength Cu-20Ni-20 Mn alloy was prepared by vacuum melting and its mechanical property and corrosion behavior were investigated. After thermomechanical treatment, the alloy exhibited an ultra-high tensile strength of 1204 MPa and the applicable elongation of up to 6.2%. With the increasing exposure time in 3.5% Na Cl solution, the corrosion current of the alloy decreased, while the polarization resistance and the charge-transfer resistance of the corrosion surface increased. The corrosion products formed on the surface of the alloy exposed for 1 d, and further corrosion made the corrosion product layer much dense, increasing the corrosion resistance and protecting the alloy from further corrosion.
基金This work is funded by National Key R&D Project (2017YFC0307605)the China Geological Survey (DD20160217,DD20190218)+1 种基金the National Natural Science Foundation of China (11572165)we would like to extend our sincere appreciation for these.
文摘In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production.
文摘Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy ( SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni- based γ solid solution, Ni3Al ( γ') , Ni3B, WB, CrB, and a small quantity of WC, NbC, The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.
基金the National Key R&D Program of China(No.2017YFA0204403)the National Natural Science Foundation of China(Nos.51971112,51225102)the Fundamental Research Funds for the Central Universities,China(No.30919011405).
文摘To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.
文摘Sand production from loosely consolidated reservoirs is one of the critical issues in the oil and gas in-dustry all around the world that can cause many problems,such as erosion of surface and well equip-ment,sand accumulation in wells and operation facilities,buckling of casing in cased-hole wells and well productivity reduction.Sand production control methods include restrictive production rate,mechanical methods(slotted liner,wire-wrapped screen,pre-packed screen,frac-pack,gravel pack,high-rate water pack)and chemical consolidation that chemical method is considered for more effectiveness in sand production alleviation due to increasing formation strength in near wellbore region.This review provides an overview on the laboratory and filed operation investigations of chemical remedy for sand production.Some used chemical agents and more common laboratory tests for evaluating the chemical performance in sand consolidation are introduced in this paper.Furthermore,the results of field operations and in-jections of chemicals into the desired formation are also reported.These results show that the chemical sand consolidation is more effective in newly perforated wells which have no sand production experi-ence and have a production history of less than two years.Finally,it was concluded that the main challenges in applying this method are permeability and capillary force reduction around the wellbore and selective injection into the targeted formation layers.
基金financially supported by the European Union for the project Marie Curie TOK-DEV MTKD-CT-2006-042468
文摘This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.
文摘This study presents the development of ultra high strength concrete(UHSC)that has been made more sustainable by using both local materials from central Texas and spent foundry sand(FS)from the metal casting industry,which has also been obtained locally.This study first describes various trial mixtures tested as well as the specimen preparation techniques investigated that led to the final UHSC-FS mixtures.The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as making UHSC more affordable to a wider variety of applications.The final mixture design constituents were:river sand,locally available type I/II cement,silica fume,and spent FS,which was obtained from a local steel casting company.Multiple variables were investigated,such as the aggregate type and size,concrete age(7,14,and 28-days),the curing regimen,and the water-to-cement ratio(w/cm)to optimize a UHSC mixture that used local materials and FS.This systematic development revealed that heat curing the specimens in a water bath at 50 oC(122 oF)after demolding and then dry curing at 200 oC(392 oF)two days before testing with a w/cm of 0.20 at 28-days produced the highest compressive strengths.Once an optimum UHSC mixture was identified a partial replacement of the fine aggregate with FS was completed at 10%,20%,and 30%.The results showed an increase of compressive strength performance at 10%replacement,followed by no change at 20%,and finally a slight decrease at 30%.Developing this innovative material with local materials and FS ultimately produces a novel sustainable construction material,reduces the costs,and produces mechanical performance similar to prepackaged,commercially,available construction building materials.
基金This study has been supported by the Major Science and Technology Project“Comprehensive Research of Exploration Matching and Application of New Technology”(2016ZX5051-3)of CNPC.
文摘Reservoirs characterized by high temperature,high-pressure,medium high cementation strength,low porosity,and low permeability,in general,are not affected by sand production issues.Since 2009,however,it is known that cases exists where sand is present and may represent a significant technical problem(e.g.,the the Dina II condensate gas field).In the present study,the main factors affecting sand production in this type of reservoir are considered(mechanical properties,stress fields,production system,completion method and gas flow pattern changes during the production process).On this basis,a new liquid-solid coupled porous elasto-plastic 3D sand production model is introduced and validated through comparison with effective sand production data.The related prediction errors are found to be within 15%,which represents the necessary prerequisite for the utilization of such a model for the elaboration of sand prevention measures.