期刊文献+
共找到1,345篇文章
< 1 2 68 >
每页显示 20 50 100
Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time 被引量:1
1
作者 Dong Ma Chunjie Xu +6 位作者 Shang Sui Jun Tian Can Guo Xiangquan Wu Zhongming Zhang Dan Shechtman Sergei Remennik 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4696-4709,共14页
Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc ... Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys. 展开更多
关键词 Wire arc additive manufacturing Interlayer dwell time strength-ductility Magnesium alloys
下载PDF
Achieving gradient heterogeneous structure in Mg alloy for excellent strength-ductility synergy
2
作者 Jing Han Jiapeng Sun +6 位作者 Yuanming Song Bingqian Xu Zhenquan Yang Songsong Xu Ying Han Guosong Wu Jiyun Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2392-2403,共12页
Most metals including Mg alloys have a longstanding dilemma of strength-ductility trade-off,which is hindering their wider applications.In this study,we propose a gradient heterogeneous grain(GHG)structure for evading... Most metals including Mg alloys have a longstanding dilemma of strength-ductility trade-off,which is hindering their wider applications.In this study,we propose a gradient heterogeneous grain(GHG)structure for evading this trade-off dilemma and ultrasonic severe surface rolling is attempted to construct this novel structure in ZE41 Mg alloy.Here,the GHG structure combine the benefits of gradient structure and heterogeneous grain structure and introduce large microstructural heterogeneities.Compared to the coarse-grain and heterogeneous-grain structured alloys,the GHG structured one exhibits dramatical enhancement in strength,ductility,and strain hardening capability.To the best of our knowledge,its strength becomes much higher than that of common ZE41 Mg alloys at no reduction in ductility.These unique mechanical properties stem from not only the individual contribution of the heterogeneous structure components including the fine/ultrafine grains and deformed coarse grains but also their synergistic effect via hetero-deformation induced strengthening and hardening effects.In summary,our study provides a feasible way to develop new Mg alloys with high strength and good ductility. 展开更多
关键词 Mg alloy ZE41 GRADIENT Heterostructure strength-ductility trade-off
下载PDF
Multidimensional defects tailoring local electron and Mg^(2+) diffusion channels for boosting magnesium storage performance of WO_(3)/MoO_(2)
3
作者 Shiqi Ding Yuxin Tian +8 位作者 Jiankang Chen He Lv Amin Wang Jingjie Dai Xin Dai Lei Wang Guicun Li Alan Meng Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期476-485,共10页
Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects a... Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects are constructed in WO_(3)/MoO_(2) simultaneously via competing for and sharing with O atoms during simple hydrothermal process.OD and 2D defects tailor local electron,activating more sites and generating built-in electric fields to yield ion reservoir,meanwhile,3D defect owning lower anisotropic property tailors Mg^(2+) diffusion channels to fully exploit Mg^(2+) adsorbed sites induced by OD and 2D defects,enhance the kinetics and maintain structural stability.Benefitted from synergistic effect of 0D/2D/3D structural defects,the designed WO_(3)/MoO_(2) shows the higher specific capacity(112.8 mA h g^(-1) at 50 mA g^(-1) with average attenuation rate per cycle of 0.068%),superior rate capability and excellent cycling stability(specific capacity retention of 80% after 1500 cycles at 1000 mA g^(-1)).This strategy provides design ideas of introducing multidimensional structural defects for tailoring local electron and microstructure to improve energy storage property. 展开更多
关键词 Multidimensional defects Local electron tailoring HETEROSTRUCTURE Cathode Magnesium ions batteries
下载PDF
Tailoring of thermal expansion and phase transition temperature of ZrW_(2)O_8 with phosphorus and enhancement of negative thermal expansion of ZrW_(1.5)P_(0.5)O_(7.75)
4
作者 张晨骏 何小可 +1 位作者 闵志宇 李保忠 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期696-700,共5页
ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adoptin... ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adopting P to part-substitute W for ZrW_(2-x)P_(x)O_(8-0.5x)has decreased the sintering temperature and avoided the quenching process.When x=0.1,ZrW_(1.9)P_(0.1)O_(7.95)with a stable cubic structure can be obtained at 1150℃.The thermal expansion coefficient is tailored with the P content,and phase transition temperature is lowered.When x=0.5,thermal expansion coefficient attains-13.6×10^(-6)℃^(-1),ZrW_(1.5)P_(0.5)O_(7.75)exhibits enhance negative thermal expansion property.The difference of electronegativity leads to the decrease of phase transition temperature with the increase of P content.The different radii of ions lead to new structure of materials when P substitutes more.The results suggest that the P atom plays the stabilization role in the crystal structure of ZrW_(2-x)P_(x)O_(8-0.5x). 展开更多
关键词 tailored thermal expansion phase transition negative thermal expansion stabilization role XRD
下载PDF
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
5
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 Transition metal dichalcogenides Atomic substitution tailored structure Tunable bandgap Enhanced applications
下载PDF
Doping Induced Tailoring in the Morphology,Band-Gap and Ferromagnetic Properties of Biocompatible ZnO Nanowires, Nanorods and Nanoparticles 被引量:2
6
作者 Javed Iqbal Tariq Jan +2 位作者 Yu Ronghai Sa jjad Haider Naqvi Ishaq Ahmad 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期242-251,共10页
The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, v... The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent. 展开更多
关键词 ZnO Fe doping Dipole-dipole interaction Band-gap tailoring FERROMAGNETISM CYTOTOXICITY
下载PDF
Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature 被引量:5
7
作者 Yang Xia Lanfang Que +6 位作者 Fuda Yu Liang Deng Zhenjin Liang Yunshan Jiang Meiyan Sun Lei Zhao Zhenbo Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期63-78,共16页
Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for ano... Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T.Herein,we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti_(3)C_(2) MXene(Ti_(3)C_(2)-N_(funct)) to address these issues.The introduction of nitrogen terminals endows Ti_(3)C_(2)-N_(funct) with large interlayer space and charge redistribution,improved conductivity and sufficient adsorption sites for Na^(+),which improves the possibility of Ti_(3)C_(2) for accommodating more Na atoms,further enhancing the Na^(+) storage capability of Ti_(3)C_(2).As revealed,Ti_(3)C_(2)-N_(funct) not only possesses a lower Na-ion diffusion energy barrier and charge trans-fer activation energy,but also exhibits Na^(+)-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T.Besides,the solid electrolyte interface dominated by inorganic com-pounds is more beneficial for the Na^(+)transfer at the electrode/electrolyte interface.Compared with of the unmodified sample,Ti_(3)C_(2)-Nfunct exhibits a twofold capacity(201 mAh g^(-1)),fast-charging ability(18 min at 80% capacity retention),and great superiority in cycle life(80.9%@5000 cycles)at -25℃.When coupling with Na_(3)V_(2)(PO_(4))_(2)F_(3) cathode,the Ti_(3)C_(2)-N_(funct)//NVPF exhibits high energy density and cycle stability at -25℃. 展开更多
关键词 tailoring nitrogen terminals Na^(+)-solvent co-intercalation Interfacial kinetics Fast charging Low-temperature SIBs
下载PDF
A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries 被引量:1
8
作者 Xiao Ma Min Zha +5 位作者 Siqing Wang Yi Yang Hailong Jia Dan Gao Cheng Wang Huiyuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2889-2900,共12页
Developing low-cost rolled Mg alloys with both high strength and ductility is desirable,while the improved strength is generally accompanied with decreased ductility.Here,by using rotated hard-plate rolling(RHPR)with ... Developing low-cost rolled Mg alloys with both high strength and ductility is desirable,while the improved strength is generally accompanied with decreased ductility.Here,by using rotated hard-plate rolling(RHPR)with a total thickness reduction of~85%,we obtained a Mg-8Al-0.5Zn-0.8Ce(wt.%,AZ80-0.8Ce)alloy with a high strength-ductility synergy,i.e.,the yield strength(YS),ultimate tensile strength(UTS)and elongation-to-failure(EF)are~308 MPa,~360 MPa and~13.8%,respectively.It reveals that the high YS is mainly originated from grain boundary strengthening(~212 MPa),followed by dislocation strengthening(~43 MPa)and precipitation hardening(~25 MPa).It is found that a relatively homogeneous fine grain structure containing a large fraction(~62%)of low angle boundaries(LABs)is achieved in the RHPRed alloy,which is benefit for the high tensile EF value.It demonstrates that LABs have important contributions to strengthening and homogenizing tensile deformation process,leading to the simultaneous high strength and high EF.Our work provides a new insight for fabrication of low-cost high performance Mg alloys with an excellent strength-ductility synergy. 展开更多
关键词 Mg-Al-Zn alloys Rolling Strengthening mechanism Microstructure strength-ductility synergy
下载PDF
Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells 被引量:1
9
作者 Jianchao Yang Yu Chen +6 位作者 Weijian Tang Shubo Wang Qingshan Ma Yihui Wu Ningyi Yuan Jianning Ding Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期217-225,I0007,共10页
Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film ... Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film remains limited success.Herein,a facile but effective strategy has been developed to finely tailor the crystallization of thermally stable cesium/formamidinium(Cs/FA)based perovskite via partially replacing PbI2 with PbCl2 in the precursor solution.The incorporation of chlorine into the perovskite crystal lattice derived from PbCl2 changes the crystallization process and improves the crystal quality,which further results in the formation of larger crystal grains compared to the control sample.The larger crystal grains with high crystallinity lead to reduced grain boundaries,suppressed non-radiative recombination,and enhanced photoluminescence lifetime.Under the optimized conditions,the methylammonium free perovskite solar cells(PSCs)delivers a champion power conversion efficiency(PCE)of 21.30%with an open-circuit voltage as high as 1.18 V,which is one of the highest efficiencies for Cs/FA based PSCs up to now.Importantly,the unencapsulated PSC devices retain more than 95%and 81%of their original PCEs even after long-term(over one year)storage under ambient conditions or 2000 h’s thermal aging at 850C in a nitrogen atmosphere,respectively. 展开更多
关键词 Crystallization tailoring Crystal quality Stability Perovskite solar cells
下载PDF
Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence 被引量:4
10
作者 Zhuo Wang Bo Zhang +1 位作者 Dezhi Tan Jianrong Qiu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第1期1-8,共8页
Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)... Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)years is attained with single ultrafast laser pulse induced reduction of Eu^(3+)ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm^(2).Furthermore,the active ions of Eu^(2+)exhibit strong and broadband emission with the full width at half maximum reaching 190 nm,and the photoluminescence(PL)is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses.The developed technology and materials will be of great significance in photonic applications such as long-term ODS. 展开更多
关键词 ultrafast laser photoluminescence tailoring ultralong lifetime optical data storage
下载PDF
Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
11
作者 张也 郭怀红 +4 位作者 董宝娟 朱震 杨腾 王吉章 张志东 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期41-49,共9页
Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterpa... Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures. 展开更多
关键词 tailoring ELECTRONIC PROPERTIES TWO-DIMENSIONAL antimonene isoelectronic COUNTERPARTS
下载PDF
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons 被引量:1
12
作者 刘洋 夏蔡娟 +3 位作者 张博群 张婷婷 崔焱 胡振洋 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第6期62-65,共4页
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function... The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices. 展开更多
关键词 Effect of Chemical Doping on the Electronic Transport Properties of tailoring Graphene Nanoribbons
下载PDF
Novel material tailoring method for internally pressurized FG spherical and cylindrical vessels
13
作者 Fayyaz Nosouhi Dehnavi Ali Parvizi Karen Abrinia 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第5期936-948,共13页
A new material tailoring method for spherical and cylindrical vessels made of functionally graded materials (FGMs) is presented.It is assumed that the FG material is composed of an A1-SiC metallic-matrix composite.A u... A new material tailoring method for spherical and cylindrical vessels made of functionally graded materials (FGMs) is presented.It is assumed that the FG material is composed of an A1-SiC metallic-matrix composite.A uniform ratio of inplane shear stress to yield strength [φ(r)] is used as the design criterion to utilize the maximum capacity of the vessel.The aim is to find a distribution of SiC particles in the radial direction,i.e.,f(r),that achieves a uniform index φ(r) =const,through the wall thickness of the internally pressurized spherical or cylindrical vessel.Both the Mori-Tanaka and rule-of-mixtures homogenization schemes are used to express the effective elastic module and Poisson's ratio.Moreover,the strength of the composite is expressed based on the rule of mixtures.Besides,finite element simulation is carried out to verify the accuracy of the analytical solution.The effects of input parameters such as the internal pressure,strength of the SiC particles,ratio of in-plane shear stress to effective yield strength,and choice of homogenization scheme on the tailored distribution of the SiC volume fraction in the radial direction are also investigated. 展开更多
关键词 Material tailoring SPHERE Cylinder FGM Mori-Tanaka RULE of mixtures
下载PDF
Laminate Tailoring of Composite Tubular Structures to Improve Crashworthiness Design at Off-Axis Loading
14
作者 A. Rabiee H. Ghasemnejad 《Open Journal of Composite Materials》 2018年第3期84-109,共26页
This paper presents experimental and numerical investigation on the parameters effecting energy absorption capability of composite tubular structures at oblique loading to improve crashworthiness performance. Various ... This paper presents experimental and numerical investigation on the parameters effecting energy absorption capability of composite tubular structures at oblique loading to improve crashworthiness performance. Various inclined angles of 5°, 10°, 20° and 30° were selected for the study of off-axis loading. The results indicate that by increasing the lateral inclination angle the mean crushing force and also energy absorption capability of all tested sections decreased. From design perspective, it is necessary to investigate the parameters effecting this phenomenon. The off-axis loading effect that causes significant reduction in energy absorption was investigated and the effected parameters were improved to increase energy absorption capability. To establish this study, 10° off-axis loading was chosen to illustrate the obtained improvement in energy absorption capability. Five cases were studied with combinations of ply-orientation and flat trimming with 45° chamfer. This method was applied to the integrated 10° off-axis loading and the final results showed significant improvement in energy absorption capability of composite absorbers. Finite element model (FEM) was developed to simulate the crushing process of axial and off-axis composite section in LS-DYNA and the results were in good agreement with the experimental data. 展开更多
关键词 CRASHWORTHINESS Composites LAMINATE tailoring OFF-AXIS OBLIQUE
下载PDF
Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide
15
作者 翟彦芬 齐人铎 +2 位作者 袁晨智 张巍 黄翊东 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期293-298,共6页
In this paper,we introduce a horizontal slot in the reversed-rib chalcogenide glass waveguide to tailor its dispersion characteristics.The waveguide exhibits a flat and low dispersion over a wavelength range of 1080 n... In this paper,we introduce a horizontal slot in the reversed-rib chalcogenide glass waveguide to tailor its dispersion characteristics.The waveguide exhibits a flat and low dispersion over a wavelength range of 1080 nm,in which the dispersion fluctuates between-10.6 ps·nm-1·km-1 and +11.14 ps·nm-1·km-1.The dispersion tailoring effect is due to the mode field transfer from the reversed-rib waveguide to the slot with the increase of wavelength,which results in the extension of the low dispersion band.Moreover,the nonlinear coefficient and the phase-matching condition of the fourwave mixing process in this waveguide are studied,showing that the waveguide has great potential in nonlinear optical applications over a wide wavelength range. 展开更多
关键词 waveguide reversed matching Dispersion broadband tailor silica mixing compensate longer
下载PDF
Tailoring of therapy for chronic inflammatory demyelinating polyneuropathy
16
作者 Yusuf A.Rajabally 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1399-1400,共2页
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a treatable immune-mediated disorder, which causes in its typical form, symmetric proximal and distal weakness with large fibre sensory impairment involvin... Chronic inflammatory demyelinating polyneuropathy (CIDP) is a treatable immune-mediated disorder, which causes in its typical form, symmetric proximal and distal weakness with large fibre sensory impairment involving the four limbs. There are currently three main first-line therapeutic options for CIDP. These consist of corticosteroids, immunoglobulins and plasma exchanges (PE) which have all been found effective in a number of trials conducted over the past several years (Van den Bergh and Rajabally, 2013). No immunosuppressant therapy has shown benefit in CIDP, although they are utilized by many clinicians in various circumstances despite absence of an evidence base. 展开更多
关键词 CIDP tailoring of therapy for chronic inflammatory demyelinating polyneuropathy ORAL
下载PDF
A new strategy to strength-toughen metals: Tailoring disorder
17
作者 Minqiang Jiang Lanhong Dai 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第6期362-369,共8页
Metals have been mankind’s most essential materials for thousands of years.In recent years,however,innovation-driven development of major national security strategy and core areas of the national economy is highly im... Metals have been mankind’s most essential materials for thousands of years.In recent years,however,innovation-driven development of major national security strategy and core areas of the national economy is highly impeded by a shortage of advanced higher-strength-toughness metals.One of the main reasons is that metals inherently exhibit the inverted-relationship of strength-toughness.The emergence of two types of disordered metals:amorphous alloys and high entropy alloys,provides a fully-fresh strategy for strength-toughening by tailoring the topological and/or chemical disorder.In this paper,we first briefly review the history of strength-toughening of metals,and summarize the development route-map.We then introduce amorphous alloys and high entropy alloys,as well as some case studies in tailoring disorder to successfully achieve coexisting high strength and high ductility/toughness.Relevant challenges that await further research are summarized in concluding remarks. 展开更多
关键词 Amorphous alloys High entropy alloys Strength-toughening Disorder tailoring Plasticity and fracture
下载PDF
Tailoring of onboard system software
18
作者 彭俊杰 洪炳镕 +1 位作者 魏振华 乔永强 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第3期325-328,共4页
Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tai... Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tailoring at the cost of depleting the flexibility of hardware, which causes the lack of flexibility, and de-grades their tailors. A layered modular tailoring model has been proposed together with some tailoring operationsto improve the flexibility of the systems, and algorithms have been proposed for verification of tailoring opera-tions with the current operating system. 展开更多
关键词 嵌入式实时操作系统 片上系统 系统软件 组件
下载PDF
Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe_(2) with Low Substitution of Ti for Zr
19
作者 王盛 Zia ur Rehman +9 位作者 刘站锋 李彤瑞 李昱良 吴云波 朱红恩 崔胜涛 刘毅 张国斌 宋礼 孙喆 《Chinese Physics Letters》 SCIE EI CAS CSCD 2022年第7期69-73,共5页
Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic... Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic properties of TMDCs, because the multi-elemental characteristics provide additional tunability at the atomic level and advantageously alter the physical properties of TMDCs. Herein, ternary Ti_(x)Zr_(1-x)Se_(2) single crystals were synthesized using the chemical-vapor-transport method. The changes in electronic structures of ZrSe_(2) induced by Ti substitution were revealed using angle-resolved photoemission spectroscopy. Our data show that at a low level of Ti substitution, the bandgap of Ti_(x)Zr_(1-x)Se_(2) decreases monotonically, and the electronic system undergoes a transition from a semiconducting to a metallic state without a significant variation of dispersions of valence bands. Meanwhile, the size of spin-orbit splitting dominated by Se 4p orbitals decreases with the increase of Ti doping. Our work shows a convenient way to alter the bandgap and spin-orbit coupling in TMDCs at the low level of substitution of transition metals. 展开更多
关键词 RED tailoring of Bandgap and Spin-Orbit Splitting in ZrSe_(2)with Low Substitution of Ti for Zr
下载PDF
Long-term efficacy of a computer-tailored physical activity intervention for prostate and colorectal cancer patients and survivors:A randomized controlled trial
20
作者 Rianne Henrica Johanna Golsteijn Catherine Bolman +3 位作者 Denise Astrid Peels Esmee Volders Hein de Vries Lilian Lechner 《Journal of Sport and Health Science》 SCIE CAS CSCD 2023年第6期690-704,F0003,共16页
Background Physical activity(PA)can improve the physical and psychological health of prostate and colorectal cancer survivors,but PA behavior change maintenance is necessary for long-term health benefits.OncoActive is... Background Physical activity(PA)can improve the physical and psychological health of prostate and colorectal cancer survivors,but PA behavior change maintenance is necessary for long-term health benefits.OncoActive is a print-and web-based intervention in which prostate and colorectal cancer patients and survivors receive automatically generated,personalized feedback aimed at integrating PA into daily life to increase and maintain PA.We evaluated the long-term outcomes of OncoActive by examining the 12-month follow-up differences between OncoActive and a control group,and we explored whether PA was maintained during a 6-month non-intervention follow-up period.Methods Prostate or colorectal cancer patients were randomly assigned to an OncoActive(n=249)or a usual care waitlist control group(n=229).OncoActive participants received PA advice and a pedometer.PA outcomes(i.e.,ActiGraph and self-report moderate-to-vigorous intensity PA(MVPA)min/week and days with≥30 min PA)and health-related outcomes(i.e.,fatigue,depression,physical functioning)were assessed at baseline,6 months,and 12 months.Differences between groups and changes over time were assessed with multilevel linear regressions for the primary outcome(ActiGraph MVPA min/week)and all additional outcomes.Results At 12 months,OncoActive participants did not perform better than control group participants at ActiGraph MVPA min/week,self-report MVPA min/week,or ActiGraph days with PA.Only self-report days with PA were significantly higher in OncoActive compared to the control group.For health-related outcomes only long-term fatigue was significantly lower in OncoActive.When exploratively examining PA within OncoActive,the previously found PA effects at the end of the intervention(6 months follow-up)were maintained at 12 months.Furthermore,all PA outcomes improved significantly from baseline to 12 months.The control group showed small but non-significant improvements from 6 months to 12 months(and from baseline to 12 months),resulting in a decline of differences between groups.Conclusion The majority of previously reported significant between-group differences at 6 months follow-up were no longer present at long-term follow-up,possibly because of natural improvement in the control group.At long-term follow-up,fatigue was significantly lower in OncoActive compared to control group participants.Computer-tailored PA advice may give participants an early start toward recovery and potentially contributes to improving long-term health. 展开更多
关键词 Behavior change maintenance Cancer survivorship Computer tailoring EHEALTH Physical activityTagedAPTARAEnd
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部