期刊文献+
共找到940篇文章
< 1 2 47 >
每页显示 20 50 100
A novel immiscible high entropy alloy strengthened via L1_(2)-nanoprecipitate
1
作者 WANG Zheng-qin FAN Ming-yu +5 位作者 ZHANG Yang LI Jun-peng LIU Li-yuan HAN Ji-hong LI Xing-hao ZHANG Zhong-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1808-1822,共15页
The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(... The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys. 展开更多
关键词 heterogeneous microstructure precipitation strengthening high-entropy alloy phase separation mechanical property
下载PDF
Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development
2
作者 Jiaqiang Li Hongtao Zhang +2 位作者 Jingtai Sun Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期826-832,共7页
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-... Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties. 展开更多
关键词 element substitution copper alloy solid solution strengthening microstructure and performance
下载PDF
Experimental investigation of engineered geopolymer composite for structural strengthening against blast loads
3
作者 Shan Liu Chunyuan Liu +3 位作者 Yifei Hao Yi Zhang Li Chen Zhan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期496-509,共14页
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme... The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens. 展开更多
关键词 Engineered geopolymer composites Fiber optimization strengthening material Blast resistance Masonry wall Reinforced AAC panel Plain concrete slab
下载PDF
Investigation of the Micro-Mechanics of an Extruded Precipitation-Strengthened Magnesium Alloy under Cyclic Loading
4
作者 Chuhao Liu Xiaodan Zhang +1 位作者 Huamiao Wang Yinghong Peng 《Journal of Materials Science and Chemical Engineering》 2024年第7期40-52,共13页
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc... Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip. 展开更多
关键词 Cyclic Deformation Magnesium Alloy In-Situ Neutron Diffraction Precipitation strengthening Crystal Plasticity Lattice Strain Mechanism Evolution
下载PDF
Selective Laser Melting of Novel SiC and TiC Strengthen 7075 Aluminum Powders for Anti-Cracks Application
5
作者 Yingjie Li Hanlin Liao 《Journal of Materials Science and Chemical Engineering》 2024年第4期136-142,共7页
The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intric... The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. . 展开更多
关键词 Selective Laser Melting (SLM) AA 7075 Fine Grain strengthen TiC SIC Green Laser
下载PDF
Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: A review 被引量:1
6
作者 Guangyu Li Wenming Jiang +4 位作者 Feng Guan Zheng Zhang Junlong Wang Yang Yu Zitian Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3059-3098,共40页
Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of lo... Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of low cost, easy to achieve metallurgical combination and suitable for the preparation of complex bimetallic parts. However, bimetallic joint strength is low due to differences of physical properties between Al and Mg, oxide film on metallic surface and interfacial Al-Mg IMCs, which is closely related to the interfacial microstructure and properties. Therefore, how to control the interface of the bimetal to achieve performance enhancement is the focus and difficulty in this field. At present, there are mainly the following strengthening methods. First, the “zincate galvanizing” and “electrolytic polishing+anodic oxidation” technology were exert on the surface of Al alloy to remove and break the oxide film, which improved the wettability between Al and Mg. Second, the undesirable Al-Mg IMCs were reduce or elimination by adding the interlayers(Zn, Ni and Ni-Cu). Thirdly, the evolution process of interfacial microstructure was changed and fine strengthening phases were formed by adding Si element to Al alloy or rare earth element to Mg alloy. Fourthly, mechanical vibration and ultrasonic vibration were applied in the process of the filling and solidification to refine and homogenize the interfacial structure. Finally, some other methods, including secondary rolling, thermal modification, heat treatment and constructing exterior 3D morphology, also can be used to regulate the interfacial microstructure and compositions. The above strengthening methods can be used alone or in combination to achieve bimetallic strengthening. Finally, the future development direction of the Mg/Al bimetal is prospected, which provides some new ideas for the development and application of the Mg/Al bimetal. 展开更多
关键词 Mg/Al bimetal PREPARATION Compound casting Interfacial regulation Interface strengthening Research progress
下载PDF
On the strengthening and slip activity of Mg-3Al-1Zn alloy with pre-induced{1012¯}twins 被引量:1
7
作者 Jie Kuang Yuqing Zhang +3 位作者 Xinpeng Du Jinyu Zhang Gang Liu Jun Sun 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1292-1307,共16页
{1012¯}twins were introduced into the magnesium(Mg)plate AZ31 via pre-rolling along its transverse direction.The plates,both with and without the pre-induced{1012¯}twins,were subjected to uniaxial tension al... {1012¯}twins were introduced into the magnesium(Mg)plate AZ31 via pre-rolling along its transverse direction.The plates,both with and without the pre-induced{1012¯}twins,were subjected to uniaxial tension along different directions.Using crystal plasticity modeling,we found that the strengthening effect of the pre-induced{1012¯}twins on the macroscopic flow stress primarily arised from the increased slip resistance caused by the boundaries,rather than the orientation hardening due to the twinning reorientation(although the latter did make its contribution in some specific loading directions).Besides,the pre-existing{1012¯}twins were found,by both experiments and simulation,to promote the activity of prismatic and pyramidal<c+a>in the parent matrix of the material.Further analysis showed that the enhanced non-basal slip activity is related to the{1012¯}twin boundaries’low micro Hall-Petch slope ratios of non-basal slips to basal slip.With the critical resolved shear stress(CRSS)obtained from crystal plasticity modeling and the orientation data from EBSD,a probability-based slip transfer model was proposed.The model predicts higher slip transfer probabilities and thus lower strain concentration tendencies at{1012¯}twin boundaries than that at grain boundaries,which agrees with the experimental observation that the strain localization was primarily associated with the latter.The present findings are helpful scientifically,in deepening our understanding of how the pre-induced{1012¯}twins affect the strength and slip activity of Mg alloys,and technologically,in guiding the design of the pre-strain protocol of Mg alloys. 展开更多
关键词 Mg alloy {1012¯}twins strengthening Slip activity Micro Hall-Petch effect
下载PDF
Nano-additive manufacturing of multilevel strengthened aluminum matrix composites 被引量:1
8
作者 Chenwei Shao Haoyang Li +6 位作者 Yankun Zhu Peng Li Haoyang Yu Zhefeng Zhang Herbert Gleiter AndréMcDonald James Hogan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期254-264,共11页
Nanostructured materials are being actively developed,while it remains an open question how to rapidly scale them up to bulk engineering materials for broad industrial applications.This study propose an industrial app... Nanostructured materials are being actively developed,while it remains an open question how to rapidly scale them up to bulk engineering materials for broad industrial applications.This study propose an industrial approach to rapidly fabricate high-strength large-size nanostructured metal matrix composites and attempts to investigate and optimize the deposition process and strengthening mechanism.Here,advanced nanocrystalline aluminum matrix composites(nanoAMCs)were assembled for the first time by a novel nano-additive manufacturing method that was guided by numerical simulations(i.e.the in-flight particle model and the porefree deposition model).The present nanoAMC with a mean grain size<50 nm in matrix exhibited hardness eight times higher than the bulk aluminum and shows the highest hardness among all Al–Al2O3 composites reported to date in the literature,which are the outcome of controlling multiscale strengthening mechanisms from tailoring solution atoms,dislocations,grain boundaries,precipitates,and externally introduced reinforcing particles.The present high-throughput strategy and method can be extended to design and architect advanced coatings or bulk materials in a highly efficient(synthesizing a nanostructured bulk with dimensions of 50×20×4 mm^(3) in 9 min)and highly flexible(regulating the gradient microstructures in bulk)way,which is conducive to industrial production and application. 展开更多
关键词 high-throughput fabrication bulk nanoAMC low-temperature additive manufacturing multi-level strengthening
下载PDF
Significant strengthening of copper-based composites using boron nitride nanotubes 被引量:1
9
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
Research on Fe-based impregnated diamond drill bits strengthened by Nano-NbC and Nano-WC 被引量:1
10
作者 Ekene Matthew Egwuonwu Uzodigwe Emmanuel Nnanwuba +3 位作者 CHANG Si DUAN Longchen NING Fulong LIU Baochang 《Global Geology》 2023年第1期21-30,共10页
In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mech... In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mechanical properties and microstructure of the diamond-matrix composite material of the Fe-based diamond drill bit were studied by using the method of uniform formula design,regression analysis and solution finding.An indoor drilling test was also carried out using the fabricated impregnated diamond drill bit.The results showed that after the addition of nano-NbC and nano-WC,the hardness and flexural strength of the matrix material got improved,as the flexural strength of the diamond composite material increased to 4.29%,the wear-resistance ratio increased to 8.75%,and the tighter the chemical bonding between the diamond and the matrix.This,indicates that the addition of nanoparticles has a positive significance in improving the performance of the diamond composite.The results of the drilling test showed that the mechanical drilling speed of the impregnated diamond drill bit after nanoparticle strengthening is 25.85%higher than that of the conventional drill bit,and the matrix wear was increased by 17.5%.It proves that nanoparticles can improve the drilling performance and efficiency of drill bit. 展开更多
关键词 Nanoparticles uniform formulation design diffusion strengthening impregnated diamond drill bits
下载PDF
Influences of oxide content and sintering temperature on microstructures and mechanical properties of intragranular-oxide strengthened iron alloys prepared by spark plasma sintering
11
作者 Deyin Zhang Xu Hao +4 位作者 Baorui Jia Haoyang Wu Lin Zhang Mingli Qin Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1748-1755,共8页
How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion stre... How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion strengthened iron alloy with high strength and appreciable ductility was fabricated by solution combustion route and subsequent spark plasma sintering, and the influences of yttrium oxide content and sintering temperature on microstructures and mechanical properties were investigated. The results show at the same sintering temperature,with the increase of yttrium oxide content, the relative density of the sintered alloy decreases and the strength increases. For Fe–2wt%Y_(2)O_(3)alloy, as the sintering temperature increases gradually, the compressive strength decreases, while the strain-to-failure increases. The Fe–2wt%Y_(2)O_(3)alloy with 15.5 nm Y_(2)O_(3)particles uniformly distributed into the 147.5 nm iron grain interior sintered at 650℃ presents a high ultimate compressive strength of 1.86 GPa and large strain-to-failure of 29%. The grain boundary strengthening and intragranular second-phase particle dispersion strengthening are the main dominant mechanisms to enhance the mechanical properties of the alloy. 展开更多
关键词 oxide dispersion strengthening spark plasma sintering microstructure and properties strengthening mechanism
下载PDF
Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning
12
作者 Zihang Li Zexin Wang +6 位作者 Zi Wang Zijun Qin Feng Liu Liming Tan Xiaochao Jin Xueling Fan Lan Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1521-1538,共18页
Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and... Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and Labusch’s theories,while the model parameters are incorporated without fitting to experimental data of complex alloys.In thiswork,four diffusionmultiples consisting of multicomponent alloys and pure Niare prepared and characterized.The composition and microhardness of singleγphase regions in samples are used to quantify the SSS.Then,Fleischer’s and Labusch’s theories are examined based on high-throughput experiments,respectively.The fitted solid solution coefficients are obtained based on Labusch’s theory and experimental data,indicating higher accuracy.Furthermore,six machine learning algorithms are established,providing a more accurate prediction compared with traditional physical models and fitted physical models.The results show that the coupling of highthroughput experiments and machine learning has great potential in the field of performance prediction and alloy design. 展开更多
关键词 Multicomponent diffusion multiples solid solution strengthening strengthening models machine learning
下载PDF
Assessing the predictive capabilities of precipitation strengthening models for deformation twinning in Mg alloys using phase-field simulations
13
作者 Darshan Bamney Laurent Capolungo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4525-4541,共17页
Precipitation strengthening is a key strategy for improving the overall mechanical properties of Mg alloys. In Mg-Al alloys, basal precipitates are known to strengthen against twinning, resulting in an increase in the... Precipitation strengthening is a key strategy for improving the overall mechanical properties of Mg alloys. In Mg-Al alloys, basal precipitates are known to strengthen against twinning, resulting in an increase in the critical resolved shear stress(CRSS) necessary for continued deformation. Although several models have been proposed to quantify the influence of precipitate shape, size, and distribution on the CRSS, the accuracy, scope, and applicability of these models has not been fully assessed. Accordingly, the objectives of this study are:(i)to analyze the accuracy of analytical models proposed in the literature for precipitation strengthening against twin thickening and propagation(in Mg-Al alloys) using phase-field(PF) simulations,(ii) to propose modifications to these model forms to better capture the observed trends in the PF data, and(iii) to subsequently test the predictiveness of the extended models in extrapolating to experimental strengthening data.First, using an atomistically-informed phase-field method, the interactions between migrating twin boundaries(during the propagation and thickening stages) and basal plates are simulated for different precipitate sizes and arrangements. In general, comparison of the increase in CRSS determined from the PF simulations and the predictions from four precipitation strengthening models reveals that modifications are necessary to the model forms to extend their applicability to precipitation strengthening against both twin thickening and propagation. A subsequent comparison between predictions from the extended models and experimental strengthening data for peak age-hardened samples reveals that the(extended) single dislocation and dislocation wall models provide reasonably accurate values of the increase in CRSS.Ultimately, the results presented here help elucidate the fidelity and applicability of the various hardening models in predicting precipitation strenghtening effects in technologically important alloys. 展开更多
关键词 TWINNING Twin precipitate interactions strengthening Magnesium alloys Phase field Mechanical behavior
下载PDF
Shear Strengthening of Reinforced Concrete (RC) with FRP Sheets Using Different Guidelines
14
作者 Bashir H. Osman 《World Journal of Engineering and Technology》 2023年第2期281-292,共12页
The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete str... The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete strength at ultimate load are considered as main strength parameters. A finite element (FE) by using ANSYS computer program was used to analyze the reinforced concrete beams. The numerical models were used to investigate the effect of beam depth, concrete strength, CFRP sheet configuration, and CFRP sheet thickness on the behavior of reinforced concrete beams strengthened with CFRP sheets compared with different guidelines. The results from ACI guideline show little difference compared with FE, which make it suitable for RC beams strengthened with FRP sheets. 展开更多
关键词 FRP Sheets strengthening RC Beams ANSYS ACI
下载PDF
The Importance of Construction Project Archives Management and Ways to Strengthen it
15
作者 Meicong Tao 《Journal of Architectural Research and Development》 2023年第6期43-48,共6页
China’s economy has been developing rapidly in recent years,leading to an acceleration of urbanization,which in turn caused the number of construction projects in various regions to increase significantly.Archives ar... China’s economy has been developing rapidly in recent years,leading to an acceleration of urbanization,which in turn caused the number of construction projects in various regions to increase significantly.Archives are important information for construction projects.The quality of archives management can have a great impact on the quality and economic benefits of construction projects.For this reason,it is necessary to increase the emphasis on archives management of construction projects and take effective management measures.This article introduces the concept of construction project archives,highlights the significance of effective management in construction project archives,and examines prevalent issues along with practical measures to enhance construction project archives management,with the goal of offering valuable insights for archive managers. 展开更多
关键词 Construction projects Archives management strengthening measures
下载PDF
Research on Practical Pathways of Strengthening Labor Education for College and University Students in the New Era
16
作者 Siwen Wang Peng Li +2 位作者 Liping Wang Xuexin Wang Yinbiao Wang 《Journal of Contemporary Educational Research》 2023年第10期105-112,共8页
Labor education is an essential component of college and university education that can help students to develop a strong work ethic,acquire practical skills,and better understand the value of work.Strengthening labor ... Labor education is an essential component of college and university education that can help students to develop a strong work ethic,acquire practical skills,and better understand the value of work.Strengthening labor education for college and university students is an urgent need of the high-quality development of the society and the internal requirement of promoting the all-round development of individuals.This study analyzes the importance of strengthening labor education for college and university students in the new era and proposes four practical pathways which draw on labor courses and campus activities,social practices,scientific research projects,and internships.After implementing these pathways,a survey of 967 students showed that students’understanding and awareness of labor was deepened,their hands-on skills and interests in science and labor practices were improved,and they became more cordially respectful to the working class.Taken together,the exploration and practice of these pathways helps college and university students to recognize their abilities,strengths,and interests,and guides them to form good labor habits that permeate all aspects of their studies and lives. 展开更多
关键词 Labor education College and university students strengthening pathways Practice and effect
下载PDF
Current progress of research on heat -resistant Mg alloys: A review
17
作者 Hong Yang Wenlong Xie +4 位作者 Jiangfeng Song Zhihua Dong Yuyang Gao Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1406-1425,共20页
With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However... With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However,the high-temperature mechanic-al properties of commonly used commercial Mg alloys,such as AZ91D,deteriorate considerably with increasing temperatures.Over the past several decades,extensive efforts have been devoted to developing heat-resistant Mg alloys.These approaches either inhibit the gen-eration of thermally unstable phases or promote the formation of thermally stable precipitates/phases in matrices through solid solution or precipitation strengthening.In this review,numerous studies are systematically introduced and discussed.Different alloy systems,includ-ing those based on Mg–Al,Mg–Zn,and Mg–rare earth,are carefully classified and compared to reveal their mechanical properties and strengthening mechanisms.The emphasis,limitations,and future prospects of these heat-resistant Mg alloys are also pointed out and dis-cussed to develop heat-resistant Mg alloys and broaden their potential application areas in the future. 展开更多
关键词 magnesium alloys mechanical properties heat resistance MICROSTRUCTURES high temperatures strengthening mechanisms
下载PDF
High-efficiency Carbonation Modification Methods of Recycled Coarse Aggregates
18
作者 张美香 YANG Xiaolin +3 位作者 丁亚红 SUN Bo ZHANG Xianggang LÜXiuwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期386-398,共13页
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo... To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate. 展开更多
关键词 recycled coarse aggregate pressurized carbonation high-efficiency carbonation NANO-SIO2 strengthening mechanism
下载PDF
Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algor
19
作者 Parth Khandelwal Harshit Indranil Manna 《Computers, Materials & Continua》 SCIE EI 2024年第4期1727-1755,共29页
Metallic alloys for a given application are usually designed to achieve the desired properties by devising experimentsbased on experience, thermodynamic and kinetic principles, and various modeling and simulation exer... Metallic alloys for a given application are usually designed to achieve the desired properties by devising experimentsbased on experience, thermodynamic and kinetic principles, and various modeling and simulation exercises.However, the influence of process parameters and material properties is often non-linear and non-colligative. Inrecent years, machine learning (ML) has emerged as a promising tool to dealwith the complex interrelation betweencomposition, properties, and process parameters to facilitate accelerated discovery and development of new alloysand functionalities. In this study, we adopt an ML-based approach, coupled with genetic algorithm (GA) principles,to design novel copper alloys for achieving seemingly contradictory targets of high strength and high electricalconductivity. Initially, we establish a correlation between the alloy composition (binary to multi-component) andthe target properties, namely, electrical conductivity and mechanical strength. Catboost, an ML model coupledwith GA, was used for this task. The accuracy of the model was above 93.5%. Next, for obtaining the optimizedcompositions the outputs fromthe initial model were refined by combining the concepts of data augmentation andPareto front. Finally, the ultimate objective of predicting the target composition that would deliver the desired rangeof properties was achieved by developing an advancedMLmodel through data segregation and data augmentation.To examine the reliability of this model, results were rigorously compared and verified using several independentdata reported in the literature. This comparison substantiates that the results predicted by our model regarding thevariation of conductivity and evolution ofmicrostructure and mechanical properties with composition are in goodagreement with the reports published in the literature. 展开更多
关键词 Machine learning genetic algorithm SOLID-SOLUTION precipitation strengthening pareto front data augmentation
下载PDF
Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
20
作者 Ning Wang Kai Ma +3 位作者 Qiu-da Li Yu-dong Yuan Yan-chun Zhao Li Feng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期147-158,共12页
AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentat... AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively. 展开更多
关键词 high-entropy alloys MICROSTRUCTURE mechanical properties wear resistance strengthening mechanisms
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部