Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri...Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.展开更多
The influence of external field(magnetic field and stress field) on the transformation strain of Ni 52.9- Mn 24.4Ga 22.7 single crystal were investigated and its mechanism was also discussed. When thermally martensiti...The influence of external field(magnetic field and stress field) on the transformation strain of Ni 52.9- Mn 24.4Ga 22.7 single crystal were investigated and its mechanism was also discussed. When thermally martensitic transformation occurs, about 0.25% transformation strain is obtained which may be obviously enhanced to about 0.8% by a 6 000 Oe magnetic bias field. However, the strain decreases by the external compress stress loaded along the strain-measured direction. When the external compress stress and bias magnetic field are simultaneously applied, the transformation strain decreases with increasing the magnetic field, which is related to the rearrangement of the martensite variants influenced by the external field.展开更多
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this pape...Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this paper, we derive the generally analytical expressions of perfectly plastic stress field at a stationary plane-strain crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the stationary tips of Mode I, Mode II and Mixed-Mode I-II plane-strain cracks are obtained. These analytical expressions contain Poisson ratio.展开更多
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressi...On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.展开更多
This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminate...This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminated after the element rebirth method was adopted. Secondly, the influence of solidification shrinkage was taken into account by increasing thermal expansion coefficients of the steels at elevated temperatures. Finally, the stress/strain distributions of different conditions have been computed and analyzed. Furthermore, the driving force curves of the solidification crack of the steels have been obtained by converting strain time curves into strain temperature curves, which founds a basis for predicting welding solidification crack.展开更多
This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress -...This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress - strain fields in the trail of molten - weld pool.Moreover, rheologic properties of the alloys in solid - liquid zone were also obtained by measuring the hading and unloading deform curves of the steels.As a result, a numerical model for simulation of stress - strain distributions of welding solidifi- cation crack was developed. On the basis of the model,the thesis simulated the driving force of solidifi- cation crack of stainless steels, that is, stress - strain fields in the trail of molten-weld pool with fi- nite element method.展开更多
A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e....A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.展开更多
Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results...Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results showed that in the X-axis, the maximum compressive stress of 850 MPa occurred in the center zone of friction interface , and the maximum tensile stress of 190 MPa distributed at the flash; in the Y-axis, the maximum compressive stress of 1 261 MPa located at the junction region between the welding fixture and edge of the specimen, and the maximum tensile stress of 320 MPa distributed in the connecting portion between the flash and edge of the specimen. In addition, areas of plastic strain increased gradually during welding process. In the X-axis, tensile strain mainly existed at the heads of the specimens; in the Y-axis, compressive strain mainly occurred at the heads of the specimens.展开更多
The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain grad...The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.展开更多
In this paper, the eigenequation of notch in Reissner plate is derived by the eigenfunction method. Eigenvalues of different notches with different angles are calculated by Muller iteration method. The expression of s...In this paper, the eigenequation of notch in Reissner plate is derived by the eigenfunction method. Eigenvalues of different notches with different angles are calculated by Muller iteration method. The expression of stress and strain at the tip of notch in Reissner plate is obtained.展开更多
The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalue...The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalues under different innerangles of the notch are obtained, the expression of stress and strain at the tip of thenotch is finally derived .展开更多
The interaction problem among fractures under the action of compressional stress is studied in this paper by using the finite element method and boundary element method respectively.The mechanical criteria which diffe...The interaction problem among fractures under the action of compressional stress is studied in this paper by using the finite element method and boundary element method respectively.The mechanical criteria which differentiate between the independent fractures and fracture systems and their computation methods are presented in this paper.The proportional conditions between length and spacing of fractures that exist interaction for several kinds of fracture groups of different geometric arrangement are given.The effect of interaction among fractures on the displacement field,stress field and strain energy distribution are computed.The relations between the fracture system of conjugate array and conjugate earthquakes are also discussed in this paper.展开更多
A series of large strike-slip and thrust faults have developed in the northeastern margin of the Tibetan Plateau since the Late Cenozoic,with strong and active tectonic activity and frequent occurrences of large earth...A series of large strike-slip and thrust faults have developed in the northeastern margin of the Tibetan Plateau since the Late Cenozoic,with strong and active tectonic activity and frequent occurrences of large earthquakes.Modulation of regional tectonic stress distribution,strain fields,and seismic hazards has not been well studied.This study introduces a three-dimensional viscoelastic finite element numerical model to calculate crustal stress and strain rate fields under current tectonic loading.The preliminary results show that the direction of the horizontal principal compressive stress rate and compressive horizontal principal strain rate in the northeastern margin of the Tibetan Plateau rotate clockwise as a whole,and this rotation is more significant in the southeast direction because of the block of the Alxa and the Ordos blocks.The NE-SW horizontal principal compressive stress rate and SE horizontal tensile stress rate dominate the entire study region.The maximum value of the horizontal principal compressive strain rate at a depth of 0 km in the model is approximately 4×10^(-8)yr^(-1)near the East Kunlun fault and is smaller in the stable Alxa and Ordos blocks at approximately 1×10^(-8)yr^(-1).The calculated regional stress state is in good agreement with the actual focal mechanism solution,indicating that strike-slip and thrust stress fields dominate the northeastern margin of the Tibetan Plateau.The Altyn Tagh,East Kunlun,and Haiyuan faults demonstrate that the maximum shear strain rate gradually decreases eastward,and the decrease in the maximum shear strain rate value is absorbed by orogenic uplift and crustal shortening at its boundaries.The western section of the Altyn Tagh fault,west-to-middle sections of the East Kunlun fault,and west-to-middle sections of the Haiyuan fault will have high seismic hazards in the future.展开更多
文摘Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.
文摘The influence of external field(magnetic field and stress field) on the transformation strain of Ni 52.9- Mn 24.4Ga 22.7 single crystal were investigated and its mechanism was also discussed. When thermally martensitic transformation occurs, about 0.25% transformation strain is obtained which may be obviously enhanced to about 0.8% by a 6 000 Oe magnetic bias field. However, the strain decreases by the external compress stress loaded along the strain-measured direction. When the external compress stress and bias magnetic field are simultaneously applied, the transformation strain decreases with increasing the magnetic field, which is related to the rearrangement of the martensite variants influenced by the external field.
文摘Under the condition that all the perfectly plastic stress components at a crack tip are the functions of ? only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this paper, we derive the generally analytical expressions of perfectly plastic stress field at a stationary plane-strain crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the stationary tips of Mode I, Mode II and Mixed-Mode I-II plane-strain cracks are obtained. These analytical expressions contain Poisson ratio.
基金Project of State Science and Technology in the Eleventh "Five-year Plan" (2006BAC01B02-02-03).
文摘On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.
文摘This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminated after the element rebirth method was adopted. Secondly, the influence of solidification shrinkage was taken into account by increasing thermal expansion coefficients of the steels at elevated temperatures. Finally, the stress/strain distributions of different conditions have been computed and analyzed. Furthermore, the driving force curves of the solidification crack of the steels have been obtained by converting strain time curves into strain temperature curves, which founds a basis for predicting welding solidification crack.
文摘This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress - strain fields in the trail of molten - weld pool.Moreover, rheologic properties of the alloys in solid - liquid zone were also obtained by measuring the hading and unloading deform curves of the steels.As a result, a numerical model for simulation of stress - strain distributions of welding solidifi- cation crack was developed. On the basis of the model,the thesis simulated the driving force of solidifi- cation crack of stainless steels, that is, stress - strain fields in the trail of molten-weld pool with fi- nite element method.
基金the National Natural Science Foundation of China (No.19704100)Science Foundation of Chinese Academy of Sciences (Project KJ951-1-20)CASK.C.Wong Post-doctoral Research Award Fund and the Post Doctoral Science Fund of China.
文摘A plane strain mode 1 crack tip field with strain gradient effects is investigated.A new strain gradient theory is used.An elastic-power law hardening strain gradient material is considered and two hardening laws,i.e.a separation law and an integration law are used respectively.As for the material with the separation law hardening,the angular distributions of stresses are consistent with the HRR field,which differs from the stress results;the angular distributions of couple stresses are the same as the couple stress results.For the material with the integration law hardening,the stress field and the couple stress field can not exist simultaneously,which is the same as the conclusion,but for the stress dominated field,the an- gular distributions of stresses are consistent with the HRR field;for the couple stress dominated field,the an- gular distributions of couple stresses are consistent with those in Ref.However,the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only,while the crack tip field of mode 1 is dominated by the tension gradient,which will be shown in another paper.
文摘Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results showed that in the X-axis, the maximum compressive stress of 850 MPa occurred in the center zone of friction interface , and the maximum tensile stress of 190 MPa distributed at the flash; in the Y-axis, the maximum compressive stress of 1 261 MPa located at the junction region between the welding fixture and edge of the specimen, and the maximum tensile stress of 320 MPa distributed in the connecting portion between the flash and edge of the specimen. In addition, areas of plastic strain increased gradually during welding process. In the X-axis, tensile strain mainly existed at the heads of the specimens; in the Y-axis, compressive strain mainly occurred at the heads of the specimens.
文摘The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
文摘In this paper, the eigenequation of notch in Reissner plate is derived by the eigenfunction method. Eigenvalues of different notches with different angles are calculated by Muller iteration method. The expression of stress and strain at the tip of notch in Reissner plate is obtained.
文摘The singularity of stress and strain at the tip of three-dimensional notch isanalysed by the power expansion method .the eigenquation of the notch is gainedthrough the boundary conditions of the notch, the eigenvalues under different innerangles of the notch are obtained, the expression of stress and strain at the tip of thenotch is finally derived .
文摘The interaction problem among fractures under the action of compressional stress is studied in this paper by using the finite element method and boundary element method respectively.The mechanical criteria which differentiate between the independent fractures and fracture systems and their computation methods are presented in this paper.The proportional conditions between length and spacing of fractures that exist interaction for several kinds of fracture groups of different geometric arrangement are given.The effect of interaction among fractures on the displacement field,stress field and strain energy distribution are computed.The relations between the fracture system of conjugate array and conjugate earthquakes are also discussed in this paper.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant Nos.U2239205,41725017)the National Key Scientific and Technological Infrastructure Project。
文摘A series of large strike-slip and thrust faults have developed in the northeastern margin of the Tibetan Plateau since the Late Cenozoic,with strong and active tectonic activity and frequent occurrences of large earthquakes.Modulation of regional tectonic stress distribution,strain fields,and seismic hazards has not been well studied.This study introduces a three-dimensional viscoelastic finite element numerical model to calculate crustal stress and strain rate fields under current tectonic loading.The preliminary results show that the direction of the horizontal principal compressive stress rate and compressive horizontal principal strain rate in the northeastern margin of the Tibetan Plateau rotate clockwise as a whole,and this rotation is more significant in the southeast direction because of the block of the Alxa and the Ordos blocks.The NE-SW horizontal principal compressive stress rate and SE horizontal tensile stress rate dominate the entire study region.The maximum value of the horizontal principal compressive strain rate at a depth of 0 km in the model is approximately 4×10^(-8)yr^(-1)near the East Kunlun fault and is smaller in the stable Alxa and Ordos blocks at approximately 1×10^(-8)yr^(-1).The calculated regional stress state is in good agreement with the actual focal mechanism solution,indicating that strike-slip and thrust stress fields dominate the northeastern margin of the Tibetan Plateau.The Altyn Tagh,East Kunlun,and Haiyuan faults demonstrate that the maximum shear strain rate gradually decreases eastward,and the decrease in the maximum shear strain rate value is absorbed by orogenic uplift and crustal shortening at its boundaries.The western section of the Altyn Tagh fault,west-to-middle sections of the East Kunlun fault,and west-to-middle sections of the Haiyuan fault will have high seismic hazards in the future.