The stability of shallow tunnels excavated in full face has been a major challenge to the scientific community for a long time. In recent years, new techniques based on the installation of a pre-reinforcement system a...The stability of shallow tunnels excavated in full face has been a major challenge to the scientific community for a long time. In recent years, new techniques based on the installation of a pre-reinforcement system ahead of the tunnel face were developed to control the deformations and surface settlements induced by the excavation and to ensure the sustainability of the tunnel in the long term. In this paper, a finite difference numerical simulation was conducted to study the behaviors and effects of two pre-reinforcement systems, i.e. the face bolting and the umbrella arch system installed in a section of southern Toulon tunnel in France. For this purpose, two approaches were taken and compared: a two-dimensional (2D) approach based on the convergence–confinement method, and a three-dimensional (3D) approach taking into account the complete modeling of the tunnel. A 2D numerical back-analysis was performed to identify the geomechanical parameters that offer satisfactory agreement with the measurement results. The limit of this method lies in the exact choice of the stress relaxation ratio λ. To overcome this uncertainty, a 3D model was developed, which permitted to study the influence of different pre-support systems on the reaction of ground mass. Both 2D and 3D numerical approaches have been fitted to measurements recorded in a section of the Toulon tunnel and the very satisfactory correspondence has allowed validating the simulations. The results show that the 3D numerical analysis with a full discretization of the inclusions seems unquestionably the most reliable approach.展开更多
文摘The stability of shallow tunnels excavated in full face has been a major challenge to the scientific community for a long time. In recent years, new techniques based on the installation of a pre-reinforcement system ahead of the tunnel face were developed to control the deformations and surface settlements induced by the excavation and to ensure the sustainability of the tunnel in the long term. In this paper, a finite difference numerical simulation was conducted to study the behaviors and effects of two pre-reinforcement systems, i.e. the face bolting and the umbrella arch system installed in a section of southern Toulon tunnel in France. For this purpose, two approaches were taken and compared: a two-dimensional (2D) approach based on the convergence–confinement method, and a three-dimensional (3D) approach taking into account the complete modeling of the tunnel. A 2D numerical back-analysis was performed to identify the geomechanical parameters that offer satisfactory agreement with the measurement results. The limit of this method lies in the exact choice of the stress relaxation ratio λ. To overcome this uncertainty, a 3D model was developed, which permitted to study the influence of different pre-support systems on the reaction of ground mass. Both 2D and 3D numerical approaches have been fitted to measurements recorded in a section of the Toulon tunnel and the very satisfactory correspondence has allowed validating the simulations. The results show that the 3D numerical analysis with a full discretization of the inclusions seems unquestionably the most reliable approach.