期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Stress-dependent shear wave splitting and permeability in fractured porous rock 被引量:3
1
作者 Daisuke Katsuki Marte Gutierrez Abdulhadi Almrabat 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2019年第1期1-11,共11页
It is well known that shear wave propagates slower across than parallel to a fracture, and as a result, a travelling shear wave splits into two directions when it encounters a fracture. Shear wave splitting and permea... It is well known that shear wave propagates slower across than parallel to a fracture, and as a result, a travelling shear wave splits into two directions when it encounters a fracture. Shear wave splitting and permeability of porous rock core samples having single fracture were experimentally investigated using a high-pressure triaxial cell, which can measure seismic shear wave velocities in two directions mutually perpendicular to the sample axis in addition to the longitudinal compressive wave velocity. A single fracture was created in the samples using a modified Brazilian split test device, where the cylindrical sample edges were loaded on two diametrically opposite lines by sharp guillotines along the sample length. Based on tilt tests and fracture surface profilometry, the method of artificially induced tensile fracture in the sample was found to create repeatable fracture surfaces and morphologies. Seismic velocities of the fractured samples were determined under different levels of stress confinement and fracture shear displacement or mismatch. The effective confining stress was varied from 0.5 MPa to55 MPa, while the fractures were mismatched by 0 mm, 0.45 mm and 1 mm. The degree of matching of the fracture surfaces in the core samples was evaluated using the joint matching coefficient(JMC). Shear wave splitting, as measured by the difference in the magnitudes of shear wave velocities parallel(V_(S1))and perpendicular(V_(S2)) to the fracture, is found to be insensitive to the degree of mismatching of the fracture joint surfaces at 2 MPa, and decreased and approached zero as the effective stress was increased.Simple models for the stress-and JMC-dependent shear wave splitting and fractured rock permeability were developed based on the experimental observations. The effects of the joint wall compressive strength(JCS), JMC and stress on the stress dependency of joint aperture were discussed in terms of hydro-mechanical response. Finally, a useful relationship between fractured rock permeability and shear wave splitting was found after normalization by using JMC. 展开更多
关键词 Fractured rock SANDSTONE stress dependency Shear wave splitting Wave velocity PERMEABILITY Fracture stiffness Elastic modulus
下载PDF
A 3D elastic-plastic-viscous constitutive model for soils considering the stress path dependency 被引量:2
2
作者 LU DeChun MIAO JinBo +2 位作者 DU XiuLi TIAN Yu YAO YangPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第5期791-808,共18页
In order to consider the stress path dependency of soils,this paper decomposes any arbitrary stress path into several infinitesimal stress paths.Then the infinitesimal stress path is further transformed into the super... In order to consider the stress path dependency of soils,this paper decomposes any arbitrary stress path into several infinitesimal stress paths.Then the infinitesimal stress path is further transformed into the superposition of two parts,i.e..a constant stress ratio part and a constant mean stress part,which arc sufficiently close to the real stress path.T he plastic strain increments under the transformed paths arc determined separately,and then the plastic strain under any path is obtained.Based on the instantaneous loading line of normally consolidated soil,a reference state line is proposed to determine the overconsolidation ratio and creep time of soil.The overconsolidation ratio is introduced into the viscous How rule to obtain the viscous strain increment.The strcss-strain-timc relationship for triaxial compression condition is extended to 3D stress condition by the transformed stress method.The proposed model adopts only seven material parameters and each of them has a clear physical meaning.Comparisons with test results demonstrate that the model can not only reasonably predict the plastic strain under typical stress paths of excavation,but adequately capture the time-dependent behaviours of soils,including creep,stress relaxation and strain rate effect. 展开更多
关键词 SOILS clastic-plastic-viscous constitutive model stress path dependency reference stale line CREEP stress relaxation
原文传递
A new model for predicting irreducible water saturation in tight gas reservoirs 被引量:1
3
作者 Yu-Liang Su Jin-Gang Fu +4 位作者 Lei Li Wen-Dong Wang Atif Zafar Mian Zhang Wei-Ping Ouyang 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1087-1100,共14页
The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple fa... The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature. 展开更多
关键词 Fractal theory stress dependence effect Capillary model Tight sandstone gas reservoir Irreducible water saturation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部