To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on th...To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering.展开更多
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development o...The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.展开更多
The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of...The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.展开更多
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u...A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.展开更多
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite ele...The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [展开更多
An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy...An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element(FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement.展开更多
This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analy...This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.展开更多
The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and tw...The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure.展开更多
<strong>Aim: </strong>To compare the type of stress distribution pattern occurring with anatomic and non-anatomic tooth forms beneath a complete denture in both maxillary and mandibular arch. <strong>...<strong>Aim: </strong>To compare the type of stress distribution pattern occurring with anatomic and non-anatomic tooth forms beneath a complete denture in both maxillary and mandibular arch. <strong>Methodology: </strong>A photoelastic model of the edentulous maxillary and mandibular ridge was prepared meticulously to simulate the human mandible and maxilla. Two sets of acrylic teeth with anatomic and non-anatomic occlusal forms were used to fabricate upper and lower dentures. A vertical static load of 100 N was applied through the mandibular model to the maxillary model. After load application on the dentures the photoelastic model as well as the upper and lower complete dentures were sectioned in the midline. The sectioned photoelastic model was viewed through a polariscope to observe the fringe pattern indicating varying amounts of stress distribution. In this study, a two-dimensional photoelastic stress analysis technique was utilized. <strong>Results:</strong> Force per unit area was observed more in anatomic teeth than the non-anatomic counterpart. Hence anatomic tooth forms may increase the possibility of bone resorption rate over a period of time. However, in non-anatomic lower teeth, a decrease in value was observed from posterior to anterior region. <strong>Conclusion: </strong>Stress of greater magnitude was observed with cuspal teeth whereas non-anatomic (0<span style="white-space:nowrap;">°</span>) showed slightly less magnitude of stress. Depending upon the clinical situation the clinician needs to choose the type of occlusal tooth forms for edentulous patients.展开更多
By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of t...By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of the stress distribution. When the main roof stress distribution was characterized, the failure form of the roof in the long wall coal seam under work was given with the failure criterion deduced. The deduced failure criterion was then applied to the No.3232(3) face of the Li- zuizi Coal Mine; the first pressure for the working face was accurately predicted. Results of the field application show that the main roof of the severely inclined coal seam under long wall working breaks in the O-X pattern, which is basically in accor- dance with the reality.展开更多
The Upper Shihezi sedimentary rocks in the Linxing region has been estimated with a significant volume of tight sandstone gas.However,lateral distribution of the present-day stress magnitude is poorly understood,which...The Upper Shihezi sedimentary rocks in the Linxing region has been estimated with a significant volume of tight sandstone gas.However,lateral distribution of the present-day stress magnitude is poorly understood,which limits further gas production.Hence,a one-dimensional mechanical earth model and a three-dimensional heterogeneous geomechanical model are built to address this issue.The results indicate that the strike-slip stress regime is dominant in the Upper Shihezi Formation.Relatively low stresses are mainly located around wells L-60,L-22,L-40,L-90,etc,and stress distributions exhibit the similarity in the Members H2 and H4.The differential stresses are relatively low in the Upper Shihezi Formation,suggesting that complex hydraulic fracture networks may be produced.Natural fractures in the Upper Shihezi Formation contribute little to the overall gas production in the Linxing region.In addition,the minimum principal stress gradient increases with Young's modulus,suggesting that the stiffer rocks commonly convey higher stress magnitudes.There is a strong interplay between stress distribution and heterogeneity in rock mechanics.Overall,the relative error between the predicted and measured results is less than 10%,implying that the predicted stress distribution is reliable and can be used for subsequent analysis in the Linxing region.展开更多
The purpose of this study was to investigate the influence of different luting agents on the stress distribution within the crown, abutment and peri-implant bone of implant-supported all-ceramic single crown. A three-...The purpose of this study was to investigate the influence of different luting agents on the stress distribution within the crown, abutment and peri-implant bone of implant-supported all-ceramic single crown. A three-dimensional finite element model of an implant-supported single crown for the first premolar of mandible was created by COSMOS 2.85. Resin-modified glass ionomer and two different resin adhesives were used to cement the crown and abutment. Vertical 600 N and horizontal 225 N loads were applied to stimulate the condition of chewing. The stress distributions within the all-ceramic crown, abutment and peri-implant bone were analyzed. The experimental results show that the stress distributions of all-ceramic crown, abutment, implant and peri-implant bone were similar when different luting agents were used. The result of present study indicated that luting agents had no influence on the stress distributions of implant-supported all-ceramic single crown.展开更多
Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to pr...Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage,and consequently,the failure of such glulam beams cannot be predicted effectively.To address these issues,an analytical method considering material nonlinearity was proposed for glulam beams,and the calculating equations of deflection and shear stress distribution for different failure modes were established.The proposed method was verified by experiments and numerical models under the corresponding conditions.Results showed that the theoretical calculations were in good agreement with experimental and numerical results,indicating that the equations proposed in this paper were reliable and accurate for such glulam beams with wood material in the elastic-plastic stage ignoring the influence of mechanic properties in radial and tangential directions of wood.Furthermore,the experimental results reported by the previous studies indicated that the method was applicable and could be used as a theoretical reference for predicting the failure of glulam beams.展开更多
The Effect of elastic modulus and thickness of the adhesives on the stress distribution in weldbonded joints has been studied with three-dimensional elastoplastic finite element method ( FEM). Stress distribution curv...The Effect of elastic modulus and thickness of the adhesives on the stress distribution in weldbonded joints has been studied with three-dimensional elastoplastic finite element method ( FEM). Stress distribution curves have been obtained at the edges of the spot welds and the lap zones in weldbonded joints, which were made with adhesives of different elastic modulus or different thickness. Results show that there exists larger stress concentration at the edge of the spot welds, though the shear stresses in the adhesive layers are smaller for weldbonded joints with low elastic modulus or thick adhesive layers. The stress concentration decreases and the shear stresses in adhesive layers increase with the increase of the elastic modulus or the decrease of the adhesive thickness. It is concluded that the thiner adhesive layers with higher elastic modulius are preferable in weldbonded joints to cut down the stress concentration.展开更多
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo...A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.展开更多
Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded co...Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded connection is difficult to measure. So it is necessary to study the reliable numerical method. At present neither the convergence analysis of the computational results nor the elastic-plastic analysis in the loading-unloading process are studied. In this paper, von Mises plasticity and kinematic hardening model is used to describe the material response. A new convergence criterion for nonlinear finite element analysis of the loading-unloading process is proposed. An axisymmetric finite element model according to the proposed convergence criterion is developed and used to analyze the distributions of axial-load and stress. It can be conclude that the stress distribution analysis is more dependent on the mesh density than the axial-load distribution analysis. The stress distribution result indicates that with increasing of applied load, the engaged threads close to the nut-bearing surface become plastic firstly. The axial-load distribution result reveals that the load percentage carried by single thread depends on the position of thread and load intensity. When the load is relatively small, the applied load is mainly carried by the engaged threads near the nut-bearing surface, when the load is larger, the differences of percentages for all threads become small. The proposed convergence analyzing procedure is applicable for other nonlinear analyses. The obtained distributions of axial-load and stress can be a reference of engineering application.展开更多
Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fix...Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aauifers.展开更多
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation....Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.展开更多
In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream d...In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wakeshedding at small spacing ratio, bi-stable flow behavior(alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.展开更多
Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasona...Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.展开更多
文摘To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering.
基金financial supports are from the National Natural Science Foundation of China (41702130 and 41971335)China Postdoctoral Science Foundation (2017T100419 and 2019M660269)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.
基金Projects 50204010 and 50427401 supported by the National Natural Science Foundation of China2005CB221505 by the National Basic Research Programof China2005BA813B-3-09 by the National "Tenth Five" Scientific and Technology Key Projects of China
文摘The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.
文摘A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.
文摘The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [
基金supported in part by the National Natural Science Foundation of China (Grant 81370438)the SJTU Medical-Engineering Cross-cutting Research Project (Grant YG2015MS53)supported by the Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Program Endowment
文摘An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element(FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement.
文摘This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.
基金Project(41807241) supported by the National Natural Science Foundation of ChinaProject(2021M693544) supported by China Postdoctoral Science FoundationProject(2022JM-160) supported by the Natural Science Basic Research Program of Shaanxi,China。
文摘The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure.
文摘<strong>Aim: </strong>To compare the type of stress distribution pattern occurring with anatomic and non-anatomic tooth forms beneath a complete denture in both maxillary and mandibular arch. <strong>Methodology: </strong>A photoelastic model of the edentulous maxillary and mandibular ridge was prepared meticulously to simulate the human mandible and maxilla. Two sets of acrylic teeth with anatomic and non-anatomic occlusal forms were used to fabricate upper and lower dentures. A vertical static load of 100 N was applied through the mandibular model to the maxillary model. After load application on the dentures the photoelastic model as well as the upper and lower complete dentures were sectioned in the midline. The sectioned photoelastic model was viewed through a polariscope to observe the fringe pattern indicating varying amounts of stress distribution. In this study, a two-dimensional photoelastic stress analysis technique was utilized. <strong>Results:</strong> Force per unit area was observed more in anatomic teeth than the non-anatomic counterpart. Hence anatomic tooth forms may increase the possibility of bone resorption rate over a period of time. However, in non-anatomic lower teeth, a decrease in value was observed from posterior to anterior region. <strong>Conclusion: </strong>Stress of greater magnitude was observed with cuspal teeth whereas non-anatomic (0<span style="white-space:nowrap;">°</span>) showed slightly less magnitude of stress. Depending upon the clinical situation the clinician needs to choose the type of occlusal tooth forms for edentulous patients.
基金Supported by the National Natural Science Foundation of China (51074005, 51004004, 51074003)
文摘By turning to the theory of elastic thin plates, a mechanical model of the main roof breaking for severely inclined seam under long wall working was esbalished, in which formulaes were deduced for the calculation of the stress distribution. When the main roof stress distribution was characterized, the failure form of the roof in the long wall coal seam under work was given with the failure criterion deduced. The deduced failure criterion was then applied to the No.3232(3) face of the Li- zuizi Coal Mine; the first pressure for the working face was accurately predicted. Results of the field application show that the main roof of the severely inclined coal seam under long wall working breaks in the O-X pattern, which is basically in accor- dance with the reality.
基金The authors would like to thank the financial support from the National Natural Science Foundation of China(41702130,41872171 and 41672146)National Science and Technology Major Project(2016ZX05066)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The Upper Shihezi sedimentary rocks in the Linxing region has been estimated with a significant volume of tight sandstone gas.However,lateral distribution of the present-day stress magnitude is poorly understood,which limits further gas production.Hence,a one-dimensional mechanical earth model and a three-dimensional heterogeneous geomechanical model are built to address this issue.The results indicate that the strike-slip stress regime is dominant in the Upper Shihezi Formation.Relatively low stresses are mainly located around wells L-60,L-22,L-40,L-90,etc,and stress distributions exhibit the similarity in the Members H2 and H4.The differential stresses are relatively low in the Upper Shihezi Formation,suggesting that complex hydraulic fracture networks may be produced.Natural fractures in the Upper Shihezi Formation contribute little to the overall gas production in the Linxing region.In addition,the minimum principal stress gradient increases with Young's modulus,suggesting that the stiffer rocks commonly convey higher stress magnitudes.There is a strong interplay between stress distribution and heterogeneity in rock mechanics.Overall,the relative error between the predicted and measured results is less than 10%,implying that the predicted stress distribution is reliable and can be used for subsequent analysis in the Linxing region.
基金Funded by the National Natural Science Foundation of China(No.81100784)
文摘The purpose of this study was to investigate the influence of different luting agents on the stress distribution within the crown, abutment and peri-implant bone of implant-supported all-ceramic single crown. A three-dimensional finite element model of an implant-supported single crown for the first premolar of mandible was created by COSMOS 2.85. Resin-modified glass ionomer and two different resin adhesives were used to cement the crown and abutment. Vertical 600 N and horizontal 225 N loads were applied to stimulate the condition of chewing. The stress distributions within the all-ceramic crown, abutment and peri-implant bone were analyzed. The experimental results show that the stress distributions of all-ceramic crown, abutment, implant and peri-implant bone were similar when different luting agents were used. The result of present study indicated that luting agents had no influence on the stress distributions of implant-supported all-ceramic single crown.
基金support from High-Level Natural ScienceFoundation of Hainan Province of China (Grant No. 2019RC055)National Natural Science Foundation ofChina (Grant No. 51808176) and the Project Funded by the National First-Class Disciplines (PNFD).
文摘Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage,and consequently,the failure of such glulam beams cannot be predicted effectively.To address these issues,an analytical method considering material nonlinearity was proposed for glulam beams,and the calculating equations of deflection and shear stress distribution for different failure modes were established.The proposed method was verified by experiments and numerical models under the corresponding conditions.Results showed that the theoretical calculations were in good agreement with experimental and numerical results,indicating that the equations proposed in this paper were reliable and accurate for such glulam beams with wood material in the elastic-plastic stage ignoring the influence of mechanic properties in radial and tangential directions of wood.Furthermore,the experimental results reported by the previous studies indicated that the method was applicable and could be used as a theoretical reference for predicting the failure of glulam beams.
文摘The Effect of elastic modulus and thickness of the adhesives on the stress distribution in weldbonded joints has been studied with three-dimensional elastoplastic finite element method ( FEM). Stress distribution curves have been obtained at the edges of the spot welds and the lap zones in weldbonded joints, which were made with adhesives of different elastic modulus or different thickness. Results show that there exists larger stress concentration at the edge of the spot welds, though the shear stresses in the adhesive layers are smaller for weldbonded joints with low elastic modulus or thick adhesive layers. The stress concentration decreases and the shear stresses in adhesive layers increase with the increase of the elastic modulus or the decrease of the adhesive thickness. It is concluded that the thiner adhesive layers with higher elastic modulius are preferable in weldbonded joints to cut down the stress concentration.
基金Projects(51071122,51271147,51201134)supported by the National Natural Science Foundation of ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central UniversitiesProject(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.
基金supported by Vehicular Diesel Engine Development Program of China (Grant No. DEDP0202)
文摘Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded connection is difficult to measure. So it is necessary to study the reliable numerical method. At present neither the convergence analysis of the computational results nor the elastic-plastic analysis in the loading-unloading process are studied. In this paper, von Mises plasticity and kinematic hardening model is used to describe the material response. A new convergence criterion for nonlinear finite element analysis of the loading-unloading process is proposed. An axisymmetric finite element model according to the proposed convergence criterion is developed and used to analyze the distributions of axial-load and stress. It can be conclude that the stress distribution analysis is more dependent on the mesh density than the axial-load distribution analysis. The stress distribution result indicates that with increasing of applied load, the engaged threads close to the nut-bearing surface become plastic firstly. The axial-load distribution result reveals that the load percentage carried by single thread depends on the position of thread and load intensity. When the load is relatively small, the applied load is mainly carried by the engaged threads near the nut-bearing surface, when the load is larger, the differences of percentages for all threads become small. The proposed convergence analyzing procedure is applicable for other nonlinear analyses. The obtained distributions of axial-load and stress can be a reference of engineering application.
文摘Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aauifers.
基金the National Natural Science Foundation of China(No.50774077)the State Key Laboratory of Coal Resources and Safe Mining Autonomous Study Subject Foundation of China(No.SKLCRSM08X04)+2 种基金the National Basic Research Program of China,the National Excellence Doctor Degree Dissertation Special Foundation of China(No.200760)the New Century Talent Support Program of the Ministry of Education of China(No.NCET-06-0475)the Youth Scientific Research Foundation of China University of Mining & Technology(No. 2008A002)
文摘Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14E090009State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, SOA), State Key Laboratory of Fluid Power Transmission and Control (GZKF-201310)+1 种基金State Key Laboratory of Ocean Engineering, China. The National Research Foundation of Singapore (NRF-CRP5-2009-01)Maritime Research Centre and Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, is acknowledged
文摘In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wakeshedding at small spacing ratio, bi-stable flow behavior(alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.
文摘Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.