We will be looking at the energy of a graviton, based upon the Stress energy tensor, and from there ascertaining how fluctuations in early universe conditions impact the mass of a graviton. Physically the mass of the ...We will be looking at the energy of a graviton, based upon the Stress energy tensor, and from there ascertaining how fluctuations in early universe conditions impact the mass of a graviton. Physically the mass of the graviton would be shrinking right after Planck time and presumably it would be going to its equilibrium value of about 10<sup>-62</sup> grams, for its present day value. It, graviton mass, would increase up to the Plank time of about 10<sup>-44</sup> seconds. Note that the result that graviton mass shrinks to 10<sup>-62</sup> grams for its present day value works only for relic gravitons.展开更多
Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy met...Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.展开更多
Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gate...Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.展开更多
To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-...To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-day with(748±26) g, 144 males and 144 females) were divided randomly into six temperature-controlled chambers. Each chamber contained six cages including eight AA broilers per cage, each cage as a repeat. After acclimation for one week(temperature, 21℃; relative humidity, 60%), the temperature of each chamber was adjusted(finished within 1 h) respectively to 10, 14, 18, 22, 26, or 30℃(RH, 60%) for a 14-day experimental period. After treatment, gross energy intake(GEI), metabolizable energy intake(MEI), the ratio of MEI/BW, metabolizability, average daily gain(ADG), the concentration of liver mitochondria protein and cytochrome c oxidase(CCO) were measured respectively. Our results confirmed that when the temperature over 26℃ for 14 days, GEI, MEI and CCO activities were decreased significantly(P〈0.05), but the concentration of liver mitochondria protein was increased and metabolizability of broilers was not influenced(P〉0.05). Compared with treatment for 14 days, the ratio of MEI/body weight(BW) were also decreased when the temperature over 26℃ after temperature stress for 7 days(P〈0.05), meanwhile mitochondrial protein concentration was increased at 10℃ and CCO activity was not affected(P〉0.05). Additionally at 22℃, the ADG reached the maximal value. When kept in uncomfortable temperatures for a long time, the ADG and CCO activities of broiler were reduced, which was accompanied by mitochondrial hyperplasia. In summary, our study focused on the performance of broilers during sustained cold and heat environmental temperatures ranging from 10 to 30℃. From the point of view of energy utilization, moreover, 22 to 26℃ is comfortable for 28–42 day s broilers. And these could provide the theoretical basis on the high efficient production.展开更多
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-ener...The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.展开更多
Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity f...Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity factor. a closed-form solution for complex. Stress intensity in terms of external loading and a mode mix parameter for fairly. general composite laminates is given. Then a procedure for determining this mode mix. parameter is presented. followed by numerical results for some laminates. Small scale contact condition is expressed in terms of external loading In particular, a symmetric property of interfacial toughness curye is proven. Finally. the accuracy of failure load predicled by elininating oscllation index is discussed. and an example is presented to show the validity and limitation of β=0 approximation.展开更多
The Qianguo Ms5. 8 earthquake swarm of 2013 occurred in Qianguo, Jilin Province, China. There are five earthquakes with Ms ≥5. 0 in the Qianguo earthquake swarm, with magnitudes of Ms 5. 5, Ms 5. 0, Ms 5. 3, Ms 5. 8 ...The Qianguo Ms5. 8 earthquake swarm of 2013 occurred in Qianguo, Jilin Province, China. There are five earthquakes with Ms ≥5. 0 in the Qianguo earthquake swarm, with magnitudes of Ms 5. 5, Ms 5. 0, Ms 5. 3, Ms 5. 8 and Ms 5. 0. In this study, the far-field seismic radiated energy characteristics of the earthquakes are compared based on the source spectrum and the ground motion spectrum of the earthquake swarm. The ground motion spectrum of the five earthquakes at Changchun seismic station (CN2), which is the national standard station, is first investigated with the recorded ground motions, and then the far-field seismic radiated energy is calculated and combined with the relationships of the source spectrum to describe the variable characteristics of the Qianguo earthquake swarm. Research results indicate that the second earthquake (No. 2) with Ms5. 0 is the key event of the earthquake swarm, which occurred on October 31, the same day following the first Ms5. 5 earthquake (No.l). In fact, the magnitude of event No. 2 decreased compared to event No.l, which did not agree with its large far-field seismic radiated energy. It needs to be pointed out that event No. 2 was the turning point event of the Qianguo earthquake swarm, as being a significant transition before the largest Ms5. 8 earthquake.展开更多
This document will from first principles delineate the degree of flatness, or deviations from, in early universe models. We will, afterwards, make comparison with recent results we have looked at concerning metric ten...This document will from first principles delineate the degree of flatness, or deviations from, in early universe models. We will, afterwards, make comparison with recent results we have looked at concerning metric tensor fluctuations and comment upon the role of what early universe gravitational energy may play a role in the presumed deviation from flat space results. Note that N~S<sub>initial(graviton)</sub>~10<sup>37 </sup>will be tied into the presumed results for initial state density, in ways we will comment upon, leading to observations which are supporting the physics given by Equation (26) of this document as with regards to Gravitational waves, from relic conditions. The deviations from flat space may help confirm the conclusions given by Buchert, Carfora, Kolb, and Wiltshire allegedly refuting the claim by Green and Wald that “the standard FLRW model approximates our Universe extremely well on all scales, except close to strong field astrophysical objects”, as well as give additional analysis appropriate for adding detail to expanding experimental procedures for investigating non FLRW models such as the Polynomial Inflation models as given by Kobayashi, and Seto, as well as other nonstandard cosmologies, as brought up by Corda, and other researchers. As well as improve upon post Bicep 2 measurements which will avoid GW signatures from interstellar dust, as opposed to relic GW. We hope that our approach may help in the differentiation between different cosmology models. Most importantly, our procedure may help, with refinement of admissible frequency range, avoid the problem of BICEP 2, which had its presumed GW signals from presumed relic conditions identical to dust induced frequencies, as so identified by the Planck collaboration in reference [25] which we comment upon in the conclusion.展开更多
We look at what may occur if Boltzmann equations, as presented by Murayama in 2007, Les Houches, are applied to graviton density in a pre-Planckian universe setting. Two restrictions are in order. First of all, we are...We look at what may occur if Boltzmann equations, as presented by Murayama in 2007, Les Houches, are applied to graviton density in a pre-Planckian universe setting. Two restrictions are in order. First of all, we are assuming a graviton mass on the order of 10?62 grams, as if the pre-Planckian regime does not change the nature of Graviton mass, in its low end. Secondly, we are also assuming that a comparatively low temperature regime (far below the Planckian temperature) exists. Finally we are leaving unsaid what may happen if Gravitational waves enter the Planck regime of ultra-high temperature. With those three considerations, we proceed to examine a Graviton density value resulting from perturbation from low to higher temperatures. In the end an ultra- hot Pre big bang cosmology will yield essentially no early universe information transfer crossovers to our present cosmological system. This is not affected by the choice if we have a single repeating universe, or a multiverse. A cold pre inflationary state yields a very different situation. Initial frequencies of Gravitons, though, as outlined may be different in the multiverse case, as opposed to the single repeating universe case. We close with comments as to Bicep 2, and how this document has material as to how to avoid the BICEP 2 disaster. And about choosing between either the possibility of massless Scalar-Tensor Gravity as the correct theory of gravitation or conventional GR.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is p...In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is proposed. In this paper, the procedure is presented to calculate the SIF of crack tips in mode I cracks, mode II cracks and I+II mixed mode cracks. Meanwhile, the results are compared to those calculated by traditional approaches or other approaches based on strain energy density and verified by theoretical solutions. Furthermore, the effect of mesh density near the crack tip is discussed, and the proper location where the strain energy density factor is calculated is also studied. The results show that the SIF calculated by this procedure is close to not only those calculated by other approaches but also the theoretical solutions, thus it is capable of achieving accurate results.Besides, the mesh density around the crack tip should meet such requirements that, in the circular area created, the first layer of singular elements should have a radius about 0.05 mm and each element has a circumferential directional meshing angle to be15°–20°. Furthermore, for a single element around the crack tip, the strain energy density factor is suggested to be calculated in the location where half of the sector element's radius from the crack tip.展开更多
ZnO thin films were synthesised by a new method which uses polyvinyl alcohol (PVA) as the polymer precursor. The films are annealed at different temperatures and for different annealing times. The structural paramet...ZnO thin films were synthesised by a new method which uses polyvinyl alcohol (PVA) as the polymer precursor. The films are annealed at different temperatures and for different annealing times. The structural parameters, like grain size, lattice constants, optical band gap, and Urbach energy, depend on the annealing temperature and time. All the films possess tensile strain, which relaxes as the annealing temperature and time increase. The photoluminescence (PL) spectra contain only ultraviolet (UV) peaks at low temperature, but as the annealing temperature and time increase, we observe peaks at the blue and green regions with a variation in the intensities of these peaks with annealing temperature and time.展开更多
A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material c...A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material considered. The resulting curve of critical fracture of mixed mode cracks shows that the present fracture is efficient and more accurate than the previous criteria.展开更多
The relection elastic waves at the elastically supported boundary of a couple stress elastic half-space are studied in this paper. Different from the classical elastic solid, there are three kinds of elastic waves in ...The relection elastic waves at the elastically supported boundary of a couple stress elastic half-space are studied in this paper. Different from the classical elastic solid, there are three kinds of elastic waves in the couple stress elastic solid, and two of them are dispersive. The boundary conditions of a couple stress elastic half-space include the couple stress vector and the rotation vector which disappear in the classical elastic solids. These boundary conditions are used to obtain a linear algebraic equation set, from which the amplitude ratios of relection waves to the incident wave can be determined. Then, the relection coeficients in terms of energy lux ratios are calculated numerically, and the normal energy lux conservation is used to validate the numerical results. Based on these numerical results,the inluences of the boundary parameters, which relect the mechanical behavior of elastic support, on the relection energy partition are discussed. Both the incident longitudinal wave(the P wave) and incident transverse wave(the SV wave) are considered.展开更多
As metallic foams used for energy absorption in the automotive and aerospace industries, recently invented lotus-type porous metals are viewed as potential energy absorbers. Yet, solid conclusion on their eligibility ...As metallic foams used for energy absorption in the automotive and aerospace industries, recently invented lotus-type porous metals are viewed as potential energy absorbers. Yet, solid conclusion on their eligibility as energy absorbers is still in question, particularly when compression is in the direction perpendicular to the axial orientation of cylindrical pores. In this work, the energy absorption of lotus-type porous coppers in the perpendicular direction is investigated at strain rates from 0.001 s^(-1) to^2400 s^(-1). The energy absorption capacity and the energy absorption efficiency are calculated to be4–16 k J/kg and 0.32–0.7, respectively, slightly inferior to metal foams and the same porous solid compressed in the parallel direction due to the shortened extent of the plateau stress region. The deformation mechanism is examined experimentally in conjunction with finite element modeling. Both suggest that gradual squeeze and collapse of pores are the mechanisms accommodating the energy absorption. The deformation is generally evenly distributed over pore ligaments and independent of strain rate.展开更多
In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = J...In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = JMδJM satisfies some decay conditions, we use stress-energy tensors to establish some monotonicity formulas of partial energies of Hermitian pluriharmonic maps. These monotonicity inequalities enable us to derive some holomorphicity for these Hermitian pluriharmonic maps.展开更多
Traditionally the deformation resistance in creep is characterized by the minimum creep rate εmin and its sensitivity to stress (stress exponent n) and temperature (activation energy Q). Various values of constan...Traditionally the deformation resistance in creep is characterized by the minimum creep rate εmin and its sensitivity to stress (stress exponent n) and temperature (activation energy Q). Various values of constant n have been reported in the literature and interpreted in terms of specific mechanisms. The present case study of coarse-grained Cu at 573 K yields a stress exponent n = 9 for εmin. in tension and a relatively low activation energy. The evolution of the deformation resistance with strain at constant tensile creep load and comparison with creep in compression without fracture indicates that the tensile εmin. result from transition from uniform deformation to strain localization during fracture. This is confirmed by the results of creep in compression where fracture is suppressed. Both the tensile εmin, and the compressive creep rate at strains around 0.3 can be described using existing equations for quasi-stationary deformation containing the subgrain boundary misorientation θ as structure parameter. While in the latter case constant θ leads to monotonic increase of n with stress, the tensile nine-power-law results from variable θ, and has no simple meaning. The result of this case study means that uncritical interpretation of minimum tensile creep rates as stationary ones bears a high risk of systematic errors in the determination of creep parameters and identification of creep mechanisms.展开更多
文摘We will be looking at the energy of a graviton, based upon the Stress energy tensor, and from there ascertaining how fluctuations in early universe conditions impact the mass of a graviton. Physically the mass of the graviton would be shrinking right after Planck time and presumably it would be going to its equilibrium value of about 10<sup>-62</sup> grams, for its present day value. It, graviton mass, would increase up to the Plank time of about 10<sup>-44</sup> seconds. Note that the result that graviton mass shrinks to 10<sup>-62</sup> grams for its present day value works only for relic gravitons.
基金funded by the National Key Research and Development Program of China (2021YFD1300403)。
文摘Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
文摘Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD39B02)the Science and Technology Innovation Team Project of Chinese Academy of Agricultural Sciences (cxgc-ias-07-2013)financial support by the State Key Laboratory of Animal Nutrition, Ministry of Science and Technology, China (2004DA125184G1105)
文摘To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-day with(748±26) g, 144 males and 144 females) were divided randomly into six temperature-controlled chambers. Each chamber contained six cages including eight AA broilers per cage, each cage as a repeat. After acclimation for one week(temperature, 21℃; relative humidity, 60%), the temperature of each chamber was adjusted(finished within 1 h) respectively to 10, 14, 18, 22, 26, or 30℃(RH, 60%) for a 14-day experimental period. After treatment, gross energy intake(GEI), metabolizable energy intake(MEI), the ratio of MEI/BW, metabolizability, average daily gain(ADG), the concentration of liver mitochondria protein and cytochrome c oxidase(CCO) were measured respectively. Our results confirmed that when the temperature over 26℃ for 14 days, GEI, MEI and CCO activities were decreased significantly(P〈0.05), but the concentration of liver mitochondria protein was increased and metabolizability of broilers was not influenced(P〉0.05). Compared with treatment for 14 days, the ratio of MEI/body weight(BW) were also decreased when the temperature over 26℃ after temperature stress for 7 days(P〈0.05), meanwhile mitochondrial protein concentration was increased at 10℃ and CCO activity was not affected(P〉0.05). Additionally at 22℃, the ADG reached the maximal value. When kept in uncomfortable temperatures for a long time, the ADG and CCO activities of broiler were reduced, which was accompanied by mitochondrial hyperplasia. In summary, our study focused on the performance of broilers during sustained cold and heat environmental temperatures ranging from 10 to 30℃. From the point of view of energy utilization, moreover, 22 to 26℃ is comfortable for 28–42 day s broilers. And these could provide the theoretical basis on the high efficient production.
基金supported by the National Natural Science Foundation of China (10772096)
文摘The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.
文摘Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity factor. a closed-form solution for complex. Stress intensity in terms of external loading and a mode mix parameter for fairly. general composite laminates is given. Then a procedure for determining this mode mix. parameter is presented. followed by numerical results for some laminates. Small scale contact condition is expressed in terms of external loading In particular, a symmetric property of interfacial toughness curye is proven. Finally. the accuracy of failure load predicled by elininating oscllation index is discussed. and an example is presented to show the validity and limitation of β=0 approximation.
基金funded by the National Natural Science Foundation,China(Grant No.41404045,No.41504047)
文摘The Qianguo Ms5. 8 earthquake swarm of 2013 occurred in Qianguo, Jilin Province, China. There are five earthquakes with Ms ≥5. 0 in the Qianguo earthquake swarm, with magnitudes of Ms 5. 5, Ms 5. 0, Ms 5. 3, Ms 5. 8 and Ms 5. 0. In this study, the far-field seismic radiated energy characteristics of the earthquakes are compared based on the source spectrum and the ground motion spectrum of the earthquake swarm. The ground motion spectrum of the five earthquakes at Changchun seismic station (CN2), which is the national standard station, is first investigated with the recorded ground motions, and then the far-field seismic radiated energy is calculated and combined with the relationships of the source spectrum to describe the variable characteristics of the Qianguo earthquake swarm. Research results indicate that the second earthquake (No. 2) with Ms5. 0 is the key event of the earthquake swarm, which occurred on October 31, the same day following the first Ms5. 5 earthquake (No.l). In fact, the magnitude of event No. 2 decreased compared to event No.l, which did not agree with its large far-field seismic radiated energy. It needs to be pointed out that event No. 2 was the turning point event of the Qianguo earthquake swarm, as being a significant transition before the largest Ms5. 8 earthquake.
文摘This document will from first principles delineate the degree of flatness, or deviations from, in early universe models. We will, afterwards, make comparison with recent results we have looked at concerning metric tensor fluctuations and comment upon the role of what early universe gravitational energy may play a role in the presumed deviation from flat space results. Note that N~S<sub>initial(graviton)</sub>~10<sup>37 </sup>will be tied into the presumed results for initial state density, in ways we will comment upon, leading to observations which are supporting the physics given by Equation (26) of this document as with regards to Gravitational waves, from relic conditions. The deviations from flat space may help confirm the conclusions given by Buchert, Carfora, Kolb, and Wiltshire allegedly refuting the claim by Green and Wald that “the standard FLRW model approximates our Universe extremely well on all scales, except close to strong field astrophysical objects”, as well as give additional analysis appropriate for adding detail to expanding experimental procedures for investigating non FLRW models such as the Polynomial Inflation models as given by Kobayashi, and Seto, as well as other nonstandard cosmologies, as brought up by Corda, and other researchers. As well as improve upon post Bicep 2 measurements which will avoid GW signatures from interstellar dust, as opposed to relic GW. We hope that our approach may help in the differentiation between different cosmology models. Most importantly, our procedure may help, with refinement of admissible frequency range, avoid the problem of BICEP 2, which had its presumed GW signals from presumed relic conditions identical to dust induced frequencies, as so identified by the Planck collaboration in reference [25] which we comment upon in the conclusion.
文摘We look at what may occur if Boltzmann equations, as presented by Murayama in 2007, Les Houches, are applied to graviton density in a pre-Planckian universe setting. Two restrictions are in order. First of all, we are assuming a graviton mass on the order of 10?62 grams, as if the pre-Planckian regime does not change the nature of Graviton mass, in its low end. Secondly, we are also assuming that a comparatively low temperature regime (far below the Planckian temperature) exists. Finally we are leaving unsaid what may happen if Gravitational waves enter the Planck regime of ultra-high temperature. With those three considerations, we proceed to examine a Graviton density value resulting from perturbation from low to higher temperatures. In the end an ultra- hot Pre big bang cosmology will yield essentially no early universe information transfer crossovers to our present cosmological system. This is not affected by the choice if we have a single repeating universe, or a multiverse. A cold pre inflationary state yields a very different situation. Initial frequencies of Gravitons, though, as outlined may be different in the multiverse case, as opposed to the single repeating universe case. We close with comments as to Bicep 2, and how this document has material as to how to avoid the BICEP 2 disaster. And about choosing between either the possibility of massless Scalar-Tensor Gravity as the correct theory of gravitation or conventional GR.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
基金supported by the National Natural Science Foundation of China(Grant No.51438002)
文摘In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is proposed. In this paper, the procedure is presented to calculate the SIF of crack tips in mode I cracks, mode II cracks and I+II mixed mode cracks. Meanwhile, the results are compared to those calculated by traditional approaches or other approaches based on strain energy density and verified by theoretical solutions. Furthermore, the effect of mesh density near the crack tip is discussed, and the proper location where the strain energy density factor is calculated is also studied. The results show that the SIF calculated by this procedure is close to not only those calculated by other approaches but also the theoretical solutions, thus it is capable of achieving accurate results.Besides, the mesh density around the crack tip should meet such requirements that, in the circular area created, the first layer of singular elements should have a radius about 0.05 mm and each element has a circumferential directional meshing angle to be15°–20°. Furthermore, for a single element around the crack tip, the strain energy density factor is suggested to be calculated in the location where half of the sector element's radius from the crack tip.
文摘ZnO thin films were synthesised by a new method which uses polyvinyl alcohol (PVA) as the polymer precursor. The films are annealed at different temperatures and for different annealing times. The structural parameters, like grain size, lattice constants, optical band gap, and Urbach energy, depend on the annealing temperature and time. All the films possess tensile strain, which relaxes as the annealing temperature and time increase. The photoluminescence (PL) spectra contain only ultraviolet (UV) peaks at low temperature, but as the annealing temperature and time increase, we observe peaks at the blue and green regions with a variation in the intensities of these peaks with annealing temperature and time.
文摘A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material considered. The resulting curve of critical fracture of mixed mode cracks shows that the present fracture is efficient and more accurate than the previous criteria.
基金Project supported by the Fundamental Research Funds for the Central Universities(FRF-BR-15-026A)the National Natural Science Foundation of China(No.10972029)
文摘The relection elastic waves at the elastically supported boundary of a couple stress elastic half-space are studied in this paper. Different from the classical elastic solid, there are three kinds of elastic waves in the couple stress elastic solid, and two of them are dispersive. The boundary conditions of a couple stress elastic half-space include the couple stress vector and the rotation vector which disappear in the classical elastic solids. These boundary conditions are used to obtain a linear algebraic equation set, from which the amplitude ratios of relection waves to the incident wave can be determined. Then, the relection coeficients in terms of energy lux ratios are calculated numerically, and the normal energy lux conservation is used to validate the numerical results. Based on these numerical results,the inluences of the boundary parameters, which relect the mechanical behavior of elastic support, on the relection energy partition are discussed. Both the incident longitudinal wave(the P wave) and incident transverse wave(the SV wave) are considered.
基金financial support from the National Natural Science Foundation of China (Grant No. 50904004)
文摘As metallic foams used for energy absorption in the automotive and aerospace industries, recently invented lotus-type porous metals are viewed as potential energy absorbers. Yet, solid conclusion on their eligibility as energy absorbers is still in question, particularly when compression is in the direction perpendicular to the axial orientation of cylindrical pores. In this work, the energy absorption of lotus-type porous coppers in the perpendicular direction is investigated at strain rates from 0.001 s^(-1) to^2400 s^(-1). The energy absorption capacity and the energy absorption efficiency are calculated to be4–16 k J/kg and 0.32–0.7, respectively, slightly inferior to metal foams and the same porous solid compressed in the parallel direction due to the shortened extent of the plateau stress region. The deformation mechanism is examined experimentally in conjunction with finite element modeling. Both suggest that gradual squeeze and collapse of pores are the mechanisms accommodating the energy absorption. The deformation is generally evenly distributed over pore ligaments and independent of strain rate.
基金supported by National Natural Science Foundation of China(Grant Nos.11271071,11201400,10971029 and 11026062)Project of Henan Provincial Department of Education(Grant No.2011A110015)Talent Youth Teacher Fund of Xinyang Normal University
文摘In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = JMδJM satisfies some decay conditions, we use stress-energy tensors to establish some monotonicity formulas of partial energies of Hermitian pluriharmonic maps. These monotonicity inequalities enable us to derive some holomorphicity for these Hermitian pluriharmonic maps.
基金supported by the project CZ.1.05/1.1.00/02.0068 granted by the European Regional Development Fund
文摘Traditionally the deformation resistance in creep is characterized by the minimum creep rate εmin and its sensitivity to stress (stress exponent n) and temperature (activation energy Q). Various values of constant n have been reported in the literature and interpreted in terms of specific mechanisms. The present case study of coarse-grained Cu at 573 K yields a stress exponent n = 9 for εmin. in tension and a relatively low activation energy. The evolution of the deformation resistance with strain at constant tensile creep load and comparison with creep in compression without fracture indicates that the tensile εmin. result from transition from uniform deformation to strain localization during fracture. This is confirmed by the results of creep in compression where fracture is suppressed. Both the tensile εmin, and the compressive creep rate at strains around 0.3 can be described using existing equations for quasi-stationary deformation containing the subgrain boundary misorientation θ as structure parameter. While in the latter case constant θ leads to monotonic increase of n with stress, the tensile nine-power-law results from variable θ, and has no simple meaning. The result of this case study means that uncritical interpretation of minimum tensile creep rates as stationary ones bears a high risk of systematic errors in the determination of creep parameters and identification of creep mechanisms.