Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect...Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.展开更多
Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM si...Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM simulation occasionally failed to convince people due to the large discrepancies compared with engineering practice.As a consequence,inaccuracy predictions via such formulas in engineering standards inevitably occur,which will compromise the safety of structures.In our previous research work,an abnormal phenomenon of SIF in a cracked T-butt joint accounting for welding effect has been observed.Compared with BS 7910,the calculation results of SIF at the surface points of welded specimens cannot be well predicted,with a large discrepancy appearing.In order to explore such problem with an abnormal increase at the surface points of cracked welded specimens,a numerical investigation in terms of SIF among BS 7910,XFEM,and FEM is performed in this paper.Numerical models on both a simple cracked plate without welding effect and a cracked T-butt joint with welding effect are developed through ABAQUS.Parametric studies in terms of the effects of varied crack depth to thickness ratio(a/T) and the effects of crack depth to crack half-length ratio(a/c) are carried out.Empirical solutions from BS 7910 are used for comparison.It is found that the XFEM can provide predictions of SIF at both the crack deepest point and crack surface point of a simple cracked plate as accurate as FEM.For a T-butt joint with a transverse stiffener,a large discrepancy in terms of the weld magnification factors(Mk) occurs at the crack surface point compared with empirical predictions.An exceptional increase of von Mises stress gradient in regions close to the weld-toe is found through the simulation of FEM,whereas a constant stress gradient is obtained through XFEM.The comparison results indicate an inappropriate prediction of SIF by the utilization of the empirical formulas in BS 7910.A more reasonable prediction of the SIF at the surface point of a crack is obtained by the XFEM.Therefore,further updating of the empirical solutions in BS7910 for SIF accounting for welding effect is recommended.展开更多
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi...A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.展开更多
The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit...The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant.展开更多
Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classic...Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.展开更多
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function...Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.展开更多
Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comp...Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comprehensive study of stress intensity factors (SIFs) in rotating disks containing three-dimensional (3D) semi-elliptical cracks subjected to different working conditions is carried out. The effects of mechanical prop- erties, rotational velocity, and orientation of cracks on SIFs in rotating disks under cen- trifugal loading are investigated. Also, the effects of using composite patches to reduce SIFs in rotating disks are studied. The effects of patching design variables such as mechanical properties, thickness, and ply angle are investigated separately. The modeling and analytical procedure are verified in comparison with previously reported results in the literature.展开更多
The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed...The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed first, which is the solution of displacement fields for elastic half space with circle canyon under output plane harmonic line loading at horizontal surface. Then the integral equation for determining the unknown forces in the problem can be changed into the algebraic one and solved numerically so that crack DSIF can be determined. Last when the medium parameters are altered, the influence on the crack DSIF is discussed partially with the displacement between circle canyon and crack.展开更多
In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived us...In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived using the energy release rate theory. A mode of crack opening displacements of a normal slice is established, and the normal slice relevant functions are introduced. The proposed method is both effective and accurate for the problem of three-dimensional cracks emanating from a surface cavity. A series of useful results of SIFs are obtained.展开更多
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation...Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
BACKGROUND Young and middle-aged cancer patients in intensive care unit(ICU)often suffer from stress and pressure,causing huge physical and mental damage.Currently,there is few research on post-traumatic stress disord...BACKGROUND Young and middle-aged cancer patients in intensive care unit(ICU)often suffer from stress and pressure,causing huge physical and mental damage.Currently,there is few research on post-traumatic stress disorder(PTSD)among young and middle-aged cancer patients in ICU in China,and the psychological status of patients who have experienced both cancer development and ICU stay is still unclear.AIM To explore the risk factors for PTSD in young and middle-aged patients with cancer in ICU.METHODS Using convenient sampling method,we enrolled 150 young and middle-aged patients with cancer who were admitted to the ICU of our center during the period from July to December 2020.The general data of the patients and PTSDrelated indicators were collected.The Impact of Event Scale-Revised(IES-R)was used for assessing PTSD one month after the discharge from the ICU.Binary Logistic regression analysis was performed to assess the independent risk factors for PTSD in these patients.RESULTS Among these 150 patients,32(21.33%)were found to be with PTSD.Binary Logistic regression analysis revealed that factors significantly associated with PTSD among young and middle-aged patients with cancer in ICU included monthly income(OR=0.24,P=0.02),planned transfers(OR=0.208,P=0.019),and Acute Physiology and Chronic Health Evaluation(APACHE II)score(OR=1.171,P=0.003).CONCLUSION The low monthly income,unplanned transfers,and increased APACHE II score are the risk factors for PTSD in young and middle-aged patients with cancer in ICU.展开更多
The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A confo...The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole(a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks.展开更多
In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a proble...In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack, we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity factor, which is nearly equal to the stress intensity factor given by the asymptotic solution. Secondly, the crack problem is solved numerically by the finite element method. Depending on the modeling capability of the software, we designed an adaptive mesh model to simulate the stress singularity. Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corresponding crack problem. Therefore, the stress intensity factor may be calculated from the stress distribution in the appropriate interval, with a high accuracy.展开更多
In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condi...In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method.展开更多
Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material ...Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material was put forward. The effects of shear modulus and Poisson's ratio of the matrix material and attaching material on eigen-values were analyzed. A generalized expression for calculating/(i of the perpendicular V-notch of bi-materials was obtained by means of stress extrapolation. Effects of notch depth, notch angle and Poisson's ratio of materials on the singular stress field near the tip of the V-notch were analyzed systematically with numerical simulations. As an example, a finite plate with double edge notches under uniaxial uniform tension was calculated by the method presented and the influence of the notch angle and Poisson's ratio on the stress singularity near the tip of notch was obtained.展开更多
Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical adva...Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical advantage of the solution in the radial direction allows SIFs to be directly determined from its definition, therefore no special crack-tip treatment is necessary. Furthermore anisotropic material behavior can be treated easily. Different distributions of surface tractions are considered for the center and double-edge-cracked disks. The benchmark examples are modeled and an excellent agreement between the results in the present study and those in published literature is found. It shows that SBFEM is effective and possesses high accuracy. The SIFs of the cracked orthotropic material circular disks subjected to different surface tractions are also evaluated. The technique of substructure is applied to handle the multiple cracks problem.展开更多
The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress...The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy.展开更多
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an...The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect).展开更多
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solutio...In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF).展开更多
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher prec...In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented.展开更多
文摘Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.
文摘Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM simulation occasionally failed to convince people due to the large discrepancies compared with engineering practice.As a consequence,inaccuracy predictions via such formulas in engineering standards inevitably occur,which will compromise the safety of structures.In our previous research work,an abnormal phenomenon of SIF in a cracked T-butt joint accounting for welding effect has been observed.Compared with BS 7910,the calculation results of SIF at the surface points of welded specimens cannot be well predicted,with a large discrepancy appearing.In order to explore such problem with an abnormal increase at the surface points of cracked welded specimens,a numerical investigation in terms of SIF among BS 7910,XFEM,and FEM is performed in this paper.Numerical models on both a simple cracked plate without welding effect and a cracked T-butt joint with welding effect are developed through ABAQUS.Parametric studies in terms of the effects of varied crack depth to thickness ratio(a/T) and the effects of crack depth to crack half-length ratio(a/c) are carried out.Empirical solutions from BS 7910 are used for comparison.It is found that the XFEM can provide predictions of SIF at both the crack deepest point and crack surface point of a simple cracked plate as accurate as FEM.For a T-butt joint with a transverse stiffener,a large discrepancy in terms of the weld magnification factors(Mk) occurs at the crack surface point compared with empirical predictions.An exceptional increase of von Mises stress gradient in regions close to the weld-toe is found through the simulation of FEM,whereas a constant stress gradient is obtained through XFEM.The comparison results indicate an inappropriate prediction of SIF by the utilization of the empirical formulas in BS 7910.A more reasonable prediction of the SIF at the surface point of a crack is obtained by the XFEM.Therefore,further updating of the empirical solutions in BS7910 for SIF accounting for welding effect is recommended.
基金Project(11072269)supported by the National Natural Science Foundation of ChinaProject(20090162110066)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.
基金National Natural Science Foundation of China (10272036)
文摘The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant.
文摘Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.
基金Projects(41172244,41072224) supported by the National Natural Science Foundation of ChinaProject(2009GGJS-037) supported by the Foundation of Youths Key Teacher by the Henan Educational Committee,China
文摘Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.
文摘Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comprehensive study of stress intensity factors (SIFs) in rotating disks containing three-dimensional (3D) semi-elliptical cracks subjected to different working conditions is carried out. The effects of mechanical prop- erties, rotational velocity, and orientation of cracks on SIFs in rotating disks under cen- trifugal loading are investigated. Also, the effects of using composite patches to reduce SIFs in rotating disks are studied. The effects of patching design variables such as mechanical properties, thickness, and ply angle are investigated separately. The modeling and analytical procedure are verified in comparison with previously reported results in the literature.
文摘The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed first, which is the solution of displacement fields for elastic half space with circle canyon under output plane harmonic line loading at horizontal surface. Then the integral equation for determining the unknown forces in the problem can be changed into the algebraic one and solved numerically so that crack DSIF can be determined. Last when the medium parameters are altered, the influence on the crack DSIF is discussed partially with the displacement between circle canyon and crack.
文摘In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived using the energy release rate theory. A mode of crack opening displacements of a normal slice is established, and the normal slice relevant functions are introduced. The proposed method is both effective and accurate for the problem of three-dimensional cracks emanating from a surface cavity. A series of useful results of SIFs are obtained.
文摘Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.
文摘BACKGROUND Young and middle-aged cancer patients in intensive care unit(ICU)often suffer from stress and pressure,causing huge physical and mental damage.Currently,there is few research on post-traumatic stress disorder(PTSD)among young and middle-aged cancer patients in ICU in China,and the psychological status of patients who have experienced both cancer development and ICU stay is still unclear.AIM To explore the risk factors for PTSD in young and middle-aged patients with cancer in ICU.METHODS Using convenient sampling method,we enrolled 150 young and middle-aged patients with cancer who were admitted to the ICU of our center during the period from July to December 2020.The general data of the patients and PTSDrelated indicators were collected.The Impact of Event Scale-Revised(IES-R)was used for assessing PTSD one month after the discharge from the ICU.Binary Logistic regression analysis was performed to assess the independent risk factors for PTSD in these patients.RESULTS Among these 150 patients,32(21.33%)were found to be with PTSD.Binary Logistic regression analysis revealed that factors significantly associated with PTSD among young and middle-aged patients with cancer in ICU included monthly income(OR=0.24,P=0.02),planned transfers(OR=0.208,P=0.019),and Acute Physiology and Chronic Health Evaluation(APACHE II)score(OR=1.171,P=0.003).CONCLUSION The low monthly income,unplanned transfers,and increased APACHE II score are the risk factors for PTSD in young and middle-aged patients with cancer in ICU.
文摘The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole(a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks.
基金financial support of the National Natural Science Foundation of China (Grant 11572226)
文摘In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack, we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity factor, which is nearly equal to the stress intensity factor given by the asymptotic solution. Secondly, the crack problem is solved numerically by the finite element method. Depending on the modeling capability of the software, we designed an adaptive mesh model to simulate the stress singularity. Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corresponding crack problem. Therefore, the stress intensity factor may be calculated from the stress distribution in the appropriate interval, with a high accuracy.
文摘In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method.
基金supported by the Ministry of Education of China(No.208152)Gansu Natural Science Foundation(No.3ZS061-A52-47).
文摘Based on Zak's stress function, the eigen-equation of stress singularity ofbi-materials with a V-notch was obtained. A new definition of stress intensity factor for a perpendicular interfacial V-notch of bi-material was put forward. The effects of shear modulus and Poisson's ratio of the matrix material and attaching material on eigen-values were analyzed. A generalized expression for calculating/(i of the perpendicular V-notch of bi-materials was obtained by means of stress extrapolation. Effects of notch depth, notch angle and Poisson's ratio of materials on the singular stress field near the tip of the V-notch were analyzed systematically with numerical simulations. As an example, a finite plate with double edge notches under uniaxial uniform tension was calculated by the method presented and the influence of the notch angle and Poisson's ratio on the stress singularity near the tip of notch was obtained.
基金financially supported by the National Natural Youth Foundation of China (Grant Nos. 51109134,51009019, 11102118 and 51208310)the Liaoning Province Education Administration Foundation (Grant No. L2010413)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2011M500557)the Natural Science Foundation of Liaoning Province (Grant No.20102164)
文摘Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical advantage of the solution in the radial direction allows SIFs to be directly determined from its definition, therefore no special crack-tip treatment is necessary. Furthermore anisotropic material behavior can be treated easily. Different distributions of surface tractions are considered for the center and double-edge-cracked disks. The benchmark examples are modeled and an excellent agreement between the results in the present study and those in published literature is found. It shows that SBFEM is effective and possesses high accuracy. The SIFs of the cracked orthotropic material circular disks subjected to different surface tractions are also evaluated. The technique of substructure is applied to handle the multiple cracks problem.
基金The present research workis financially supported by the National Natural Science Foundation of China (Grant No90510018)China Postdoctorial Science Foundation (Grant No20060390985)
文摘The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy.
文摘The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect).
文摘In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF).
基金Supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, and NNSF(10161009) of P. R. of China.
文摘In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented.