Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect...Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.展开更多
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement usin...A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.展开更多
Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM si...Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM simulation occasionally failed to convince people due to the large discrepancies compared with engineering practice.As a consequence,inaccuracy predictions via such formulas in engineering standards inevitably occur,which will compromise the safety of structures.In our previous research work,an abnormal phenomenon of SIF in a cracked T-butt joint accounting for welding effect has been observed.Compared with BS 7910,the calculation results of SIF at the surface points of welded specimens cannot be well predicted,with a large discrepancy appearing.In order to explore such problem with an abnormal increase at the surface points of cracked welded specimens,a numerical investigation in terms of SIF among BS 7910,XFEM,and FEM is performed in this paper.Numerical models on both a simple cracked plate without welding effect and a cracked T-butt joint with welding effect are developed through ABAQUS.Parametric studies in terms of the effects of varied crack depth to thickness ratio(a/T) and the effects of crack depth to crack half-length ratio(a/c) are carried out.Empirical solutions from BS 7910 are used for comparison.It is found that the XFEM can provide predictions of SIF at both the crack deepest point and crack surface point of a simple cracked plate as accurate as FEM.For a T-butt joint with a transverse stiffener,a large discrepancy in terms of the weld magnification factors(Mk) occurs at the crack surface point compared with empirical predictions.An exceptional increase of von Mises stress gradient in regions close to the weld-toe is found through the simulation of FEM,whereas a constant stress gradient is obtained through XFEM.The comparison results indicate an inappropriate prediction of SIF by the utilization of the empirical formulas in BS 7910.A more reasonable prediction of the SIF at the surface point of a crack is obtained by the XFEM.Therefore,further updating of the empirical solutions in BS7910 for SIF accounting for welding effect is recommended.展开更多
The extended finite element method(XFEM) is a numerical method for modeling discontinuities within a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain factor...The extended finite element method(XFEM) is a numerical method for modeling discontinuities within a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain factor and mesh density which all influence the calculation accuracy of stress intensity factor(SIF) are discussed,and the proper parameters to calculate the SIF are given. The results from the case analysis demonstrate that the crack path is the most sensitive to the crack growth increment size, and the crack path is not mesh-sensitive. A reanalysis method for the XFEM has been introduced. The example presented shows that there is a significantly reduced computational cost for each iteration of crack growth achieved by using the reanalysis method and the reanalysis approach has increasing benefits as the mesh density increases or the value of crack growth increments size decreases.展开更多
Surface cracks are commonly observed in coatings and films.When structures with coatings are subject to stretching,opening mode cracks are likely to form on the surface,which may further lead to other forms of damage,...Surface cracks are commonly observed in coatings and films.When structures with coatings are subject to stretching,opening mode cracks are likely to form on the surface,which may further lead to other forms of damage,such as interfacial delamination and substrate damage.Possible crack forms include cracks extending towards the interface and channeling across the film.In this paper,a two-dimensional numerical model is proposed to obtain the structural strain energy at arbitrary crack lengths for bilayer structures under uniaxial tension.The energy release rate and structural stress intensity factors can be obtained accordingly,and the effects of geometry and material features on fracture characteristics are investigated,with most crack patterns being confirmed as unstable.The proposed model can also facilitate the analysis of the stress distribution in periodic crack patterns of films.The results from the numerical model are compared with those obtained by the finite element method(FEM),and the accuracy of the theoretical results is demonstrated.展开更多
文摘Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.
文摘A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.
文摘Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM simulation occasionally failed to convince people due to the large discrepancies compared with engineering practice.As a consequence,inaccuracy predictions via such formulas in engineering standards inevitably occur,which will compromise the safety of structures.In our previous research work,an abnormal phenomenon of SIF in a cracked T-butt joint accounting for welding effect has been observed.Compared with BS 7910,the calculation results of SIF at the surface points of welded specimens cannot be well predicted,with a large discrepancy appearing.In order to explore such problem with an abnormal increase at the surface points of cracked welded specimens,a numerical investigation in terms of SIF among BS 7910,XFEM,and FEM is performed in this paper.Numerical models on both a simple cracked plate without welding effect and a cracked T-butt joint with welding effect are developed through ABAQUS.Parametric studies in terms of the effects of varied crack depth to thickness ratio(a/T) and the effects of crack depth to crack half-length ratio(a/c) are carried out.Empirical solutions from BS 7910 are used for comparison.It is found that the XFEM can provide predictions of SIF at both the crack deepest point and crack surface point of a simple cracked plate as accurate as FEM.For a T-butt joint with a transverse stiffener,a large discrepancy in terms of the weld magnification factors(Mk) occurs at the crack surface point compared with empirical predictions.An exceptional increase of von Mises stress gradient in regions close to the weld-toe is found through the simulation of FEM,whereas a constant stress gradient is obtained through XFEM.The comparison results indicate an inappropriate prediction of SIF by the utilization of the empirical formulas in BS 7910.A more reasonable prediction of the SIF at the surface point of a crack is obtained by the XFEM.Therefore,further updating of the empirical solutions in BS7910 for SIF accounting for welding effect is recommended.
基金the National Basic Research Program(973) of China(No.2011CB013505)the National Natural Science Foundation of China(No.51279100)
文摘The extended finite element method(XFEM) is a numerical method for modeling discontinuities within a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain factor and mesh density which all influence the calculation accuracy of stress intensity factor(SIF) are discussed,and the proper parameters to calculate the SIF are given. The results from the case analysis demonstrate that the crack path is the most sensitive to the crack growth increment size, and the crack path is not mesh-sensitive. A reanalysis method for the XFEM has been introduced. The example presented shows that there is a significantly reduced computational cost for each iteration of crack growth achieved by using the reanalysis method and the reanalysis approach has increasing benefits as the mesh density increases or the value of crack growth increments size decreases.
基金Project supported by the National Natural Science Foundation of China(Nos.12172027 and 11572022)。
文摘Surface cracks are commonly observed in coatings and films.When structures with coatings are subject to stretching,opening mode cracks are likely to form on the surface,which may further lead to other forms of damage,such as interfacial delamination and substrate damage.Possible crack forms include cracks extending towards the interface and channeling across the film.In this paper,a two-dimensional numerical model is proposed to obtain the structural strain energy at arbitrary crack lengths for bilayer structures under uniaxial tension.The energy release rate and structural stress intensity factors can be obtained accordingly,and the effects of geometry and material features on fracture characteristics are investigated,with most crack patterns being confirmed as unstable.The proposed model can also facilitate the analysis of the stress distribution in periodic crack patterns of films.The results from the numerical model are compared with those obtained by the finite element method(FEM),and the accuracy of the theoretical results is demonstrated.