The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded c...The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.展开更多
Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on ...Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion us-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks disappear when the value of pre-stress surpasses 0. 2 σs(yield limit). Welded thin plates with low-level residual stress, little distortion and no hot cracks are obtained with longitudinal pre-tensile stress level between 0. 6σsand 0. 7σs and precompressive stress between 0. 2 σs and 0. 3 σs in transverse direction.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (S...The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (SAPMAC) method. A critical defect model has been established to explain the growth and propagation of cracks during the sapphire growing process. It is demonstrated that the stress field depends on the growth rate, the ambient temperature and the crystallizing direction. High stresses always exist near the growth interfaces, at the shoulder-expanding locations, the tailing locations and the sites where the diameters undergo sharp changes. The maximum stresses always occur at the interface of seeds and crystals. Cracks often form in the critical defect region and spread in the m-planes and a-planes under applied tensile stresses during crystal growth. The experimental results have verified that with the improved system of crystal growth and well-controlled techniques, the large-sized sapphire crystals of high quality can be grown due to absence of cracks.展开更多
Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect...Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.展开更多
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation...Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
A stress extremum method is developed based on Von Karman equations for analysis of membrane wrinkles in this paper. A mechanical model is also established for analyzing shear membrane wrinkles. Expressions of wrinkli...A stress extremum method is developed based on Von Karman equations for analysis of membrane wrinkles in this paper. A mechanical model is also established for analyzing shear membrane wrinkles. Expressions of wrinkling wavelength,amplitude and angle are obtained in terms of the stress extremum method. A numerical analysis approach-directly disturbing method is proposed to analyze the configuration parameters of shear membrane wrinkles by introducing out-of-plane disturbing forces to trigger wrinkle formation,while it timely removes the applied forces in order to eliminate the effect of disturbing forces on analytical results. The simulation results agree well with analytical results,which demonstrate that the proposed approach is capable for analyzing the membrane wrinkles with good accuracy.展开更多
The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR...The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.展开更多
Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the re...Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the rectangle-shaped wafer,which may result in the stress datum difference along length and width direction.In this paper,the effect of wafer size and the wafer fixation on the TiN film internal stress measured by wafer curvature method was discussed.The rectangle-shaped wafers with different length/width ratios(L/W=1:1,2:1,3:1 and 4:1) were fixed as a cantilever beam.After the TiN films deposition,the profiles of the film/wafer were measured using a stylus profilometer and then the internal stress was calculated using the Stoney equation in the film.The results showed that the fixed end of the wafers limited to some degree the curvature of the wafers along the width direction.For film internal stress measured by wafer curvature method,the wafer profile should be scanned along the length direction and the scan distance should be greater than or equal to half of wafer length.When the length/width ratio of the wafer reached 3:1,the wafer curvature and the calculated stress were basically the same at different positions along the length direction.For film internal stress measured by wafer curvature method,it was recommended that the length/width ratio of wafer should be considered to be greater than or equal to 3:1,and the deformed profile was scanned along the length direction.展开更多
Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to ...Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to sinusoidal law can be deduced as a limiting case of non- sinusoidal law. The simplified expressions of Peierls energy and Peierls stress are obtained for the limit of wide and narrow. Peierls energy and Peierls stress decrease monotonically with the factor of modification of force law. Present results can be used expediently for prediction of the correct order of magnitude of Peierls stress for materials.展开更多
The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse ...The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.展开更多
With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The...With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.展开更多
Residual stresses can have a strong effect on the usability of machined parts,and the X-ray diffraction(XRD)measuring equipment,which is commonly used to measure residual stresses,is very expensive.This paper presents...Residual stresses can have a strong effect on the usability of machined parts,and the X-ray diffraction(XRD)measuring equipment,which is commonly used to measure residual stresses,is very expensive.This paper presents a method of measuring the residual stresses induced by boring in the internal surface of a tube with much cheaper equipment.The method,called the strain-based method is mainly based on the strains measured on the external surface of the tube.It is proposed on the basis of the very long tube assumption.The finite element method(FEM)analysis is thus used to validate the length of the tube.Guided by the FEM results,an appropriate length of the tube is chosen,and the residual stresses are obtained from both the strain-based method and the XRD method.Stress profiles obtained from both two methods are compared.The comparison result indicates that the profiles of the two methods agree well with each other.Therefore,it can be concluded that the accuracy of the strain-based method is high enough,and it can be applied to residual stress measurement in practice.展开更多
A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic c...A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.展开更多
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic d...The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.展开更多
A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very t...A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.展开更多
The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identica...The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.展开更多
The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including...The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.展开更多
基金The National Key Research and Development Program of China(No.2017YFC0805100),the National Natural Science Foundation of China(No.51578137)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
文摘The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.
文摘Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion us-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks disappear when the value of pre-stress surpasses 0. 2 σs(yield limit). Welded thin plates with low-level residual stress, little distortion and no hot cracks are obtained with longitudinal pre-tensile stress level between 0. 6σsand 0. 7σs and precompressive stress between 0. 2 σs and 0. 3 σs in transverse direction.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.
基金National Defence Pre-research Foundation of China (41312040404)
文摘The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (SAPMAC) method. A critical defect model has been established to explain the growth and propagation of cracks during the sapphire growing process. It is demonstrated that the stress field depends on the growth rate, the ambient temperature and the crystallizing direction. High stresses always exist near the growth interfaces, at the shoulder-expanding locations, the tailing locations and the sites where the diameters undergo sharp changes. The maximum stresses always occur at the interface of seeds and crystals. Cracks often form in the critical defect region and spread in the m-planes and a-planes under applied tensile stresses during crystal growth. The experimental results have verified that with the improved system of crystal growth and well-controlled techniques, the large-sized sapphire crystals of high quality can be grown due to absence of cracks.
文摘Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.
文摘Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
基金Sponsored by the National Natural Science Foundation of China (Grant No.51078114)the Doctoral Program of Higher Education of China (Grant No.2012302120058)
文摘A stress extremum method is developed based on Von Karman equations for analysis of membrane wrinkles in this paper. A mechanical model is also established for analyzing shear membrane wrinkles. Expressions of wrinkling wavelength,amplitude and angle are obtained in terms of the stress extremum method. A numerical analysis approach-directly disturbing method is proposed to analyze the configuration parameters of shear membrane wrinkles by introducing out-of-plane disturbing forces to trigger wrinkle formation,while it timely removes the applied forces in order to eliminate the effect of disturbing forces on analytical results. The simulation results agree well with analytical results,which demonstrate that the proposed approach is capable for analyzing the membrane wrinkles with good accuracy.
基金This project is supported by National Natural Science Foundation of China(No.50305036).
文摘The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.
基金Funded by National Scholastic Athletics Foundotion(NSAF)(No.U1330113)National Natural Science Foundation of China(No.81271953)
文摘Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the rectangle-shaped wafer,which may result in the stress datum difference along length and width direction.In this paper,the effect of wafer size and the wafer fixation on the TiN film internal stress measured by wafer curvature method was discussed.The rectangle-shaped wafers with different length/width ratios(L/W=1:1,2:1,3:1 and 4:1) were fixed as a cantilever beam.After the TiN films deposition,the profiles of the film/wafer were measured using a stylus profilometer and then the internal stress was calculated using the Stoney equation in the film.The results showed that the fixed end of the wafers limited to some degree the curvature of the wafers along the width direction.For film internal stress measured by wafer curvature method,the wafer profile should be scanned along the length direction and the scan distance should be greater than or equal to half of wafer length.When the length/width ratio of the wafer reached 3:1,the wafer curvature and the calculated stress were basically the same at different positions along the length direction.For film internal stress measured by wafer curvature method,it was recommended that the length/width ratio of wafer should be considered to be greater than or equal to 3:1,and the deformed profile was scanned along the length direction.
基金Project supported by the National Natural Science Foundation of China (No.10774196)the Science Foundation Project of CQ CSTC (No.2006BB4156)Chongqing University Postgraduates'Science and Innovation Fund (No.2007A1A0030240).
文摘Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to sinusoidal law can be deduced as a limiting case of non- sinusoidal law. The simplified expressions of Peierls energy and Peierls stress are obtained for the limit of wide and narrow. Peierls energy and Peierls stress decrease monotonically with the factor of modification of force law. Present results can be used expediently for prediction of the correct order of magnitude of Peierls stress for materials.
基金Funded by the Science and Technolog Program of Ministry of Transport of P.R.China(No.2012318352100)
文摘The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.
基金founded by Project of National Natural Science Foundation of China “Study on the Anelastic Strain Recovery Compliance in the In-situ Stress Measurement by ASR Method”, No 41404080the Project of Geological Survey “Survey on the In-situ Stress Field in Southern China”
文摘With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.
基金Supported by the National Defense Program of China(C152012C002)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20123218120025)
文摘Residual stresses can have a strong effect on the usability of machined parts,and the X-ray diffraction(XRD)measuring equipment,which is commonly used to measure residual stresses,is very expensive.This paper presents a method of measuring the residual stresses induced by boring in the internal surface of a tube with much cheaper equipment.The method,called the strain-based method is mainly based on the strains measured on the external surface of the tube.It is proposed on the basis of the very long tube assumption.The finite element method(FEM)analysis is thus used to validate the length of the tube.Guided by the FEM results,an appropriate length of the tube is chosen,and the residual stresses are obtained from both the strain-based method and the XRD method.Stress profiles obtained from both two methods are compared.The comparison result indicates that the profiles of the two methods agree well with each other.Therefore,it can be concluded that the accuracy of the strain-based method is high enough,and it can be applied to residual stress measurement in practice.
文摘A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.
基金supported by the Sinoprobe Deep Exploration in China(SinoProbe-07)research funds of the Institute of Geomechanics,Chinese Academy of Geological Sciences(Grant No.DZLXJK201105)National Basic Research Program of China(973 Program)(Grant No.2008CB425702)
文摘The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.
文摘A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.
文摘The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.
基金Supported by the National Natural Science Foundation of China (50809019).
文摘The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.