Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie...Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.展开更多
Pramipexole belongs to a class of nonergot dopamine agonist recently approved for the treatment of early and advanced Parkinson's disease.A validated specific stability indicating reversed-phase liquid chromatographi...Pramipexole belongs to a class of nonergot dopamine agonist recently approved for the treatment of early and advanced Parkinson's disease.A validated specific stability indicating reversed-phase liquid chromatographic method has been developed for the quantitative determination of pramipexole in bulk as well as in pharmaceutical dosage forms in the presence of degradation products.Forced degradation studies were performed by exposition of drug to hydrolytic(acidic and basic),oxidative and photolytic stress conditions,as defined under ICH guideline Q1A(R2).Significant degradation was observed under hydrolytic,oxidative and photolytic conditions and the degradation products formed were identified by LC-MS.展开更多
Finite element analyses including a cohesive zone model (CZM) were conducted to investigate the role of corrosion product films (CPFs) in stress corrosion cracking (SCC) for copper in an ammoniacal solution. It ...Finite element analyses including a cohesive zone model (CZM) were conducted to investigate the role of corrosion product films (CPFs) in stress corrosion cracking (SCC) for copper in an ammoniacal solution. It is found that a tensile CPF-induced stress generates near the interface between the CPF and the copper substrate at the substrate side in front of the notch tip for a U-shaped edgenotched specimens. The CPF-induced stress is superimposed on the applied stress to enhance emission and motion of dislocations. The peak opening stress (S11) increases with an increase in CPF thickness and a decrease in CPF Young's modulus. Damage mechanics based on the CZM was applied to study the stress corrosion crack initiation and propagation by analyzing the stress redistributions and load-displacement curves. The results show that the crack initiates first in the CPF and then propagates to the copper substrate. The fracture strain of the specimen covered a CPF is lower than that without a CPF. Based on the simulation results, the mechanism of the CPF-induced SCC, which promoted the initiation and propagation of the stress corrosion cracks, was discussed.展开更多
基金supported by the National Natural Science Foundation of China (51621061, 91425302, 51379208)the Research Projects of the Agricultural Public Welfare Industry in China (201503125)the Discipline Innovative Engineering Plan (111 Program, B14002)
文摘Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.
文摘Pramipexole belongs to a class of nonergot dopamine agonist recently approved for the treatment of early and advanced Parkinson's disease.A validated specific stability indicating reversed-phase liquid chromatographic method has been developed for the quantitative determination of pramipexole in bulk as well as in pharmaceutical dosage forms in the presence of degradation products.Forced degradation studies were performed by exposition of drug to hydrolytic(acidic and basic),oxidative and photolytic stress conditions,as defined under ICH guideline Q1A(R2).Significant degradation was observed under hydrolytic,oxidative and photolytic conditions and the degradation products formed were identified by LC-MS.
基金financially supported by the National Natural Science Foundation of China(No.51371035)the National High Technology Research and Development Program of China(No.2013AA031104)
文摘Finite element analyses including a cohesive zone model (CZM) were conducted to investigate the role of corrosion product films (CPFs) in stress corrosion cracking (SCC) for copper in an ammoniacal solution. It is found that a tensile CPF-induced stress generates near the interface between the CPF and the copper substrate at the substrate side in front of the notch tip for a U-shaped edgenotched specimens. The CPF-induced stress is superimposed on the applied stress to enhance emission and motion of dislocations. The peak opening stress (S11) increases with an increase in CPF thickness and a decrease in CPF Young's modulus. Damage mechanics based on the CZM was applied to study the stress corrosion crack initiation and propagation by analyzing the stress redistributions and load-displacement curves. The results show that the crack initiates first in the CPF and then propagates to the copper substrate. The fracture strain of the specimen covered a CPF is lower than that without a CPF. Based on the simulation results, the mechanism of the CPF-induced SCC, which promoted the initiation and propagation of the stress corrosion cracks, was discussed.