This study presents a novel approach using theoretical analysis to assess the risk of rock burst of an island longwall panel that accounts for the coupled behavior of stress distribution and overlying strata movement....This study presents a novel approach using theoretical analysis to assess the risk of rock burst of an island longwall panel that accounts for the coupled behavior of stress distribution and overlying strata movement. The height of destressed zone(HDZ) above the mined panel was first determined based on the strain energy balance in an underground coal mining area. HDZ plays a vital role in accurately determining the amount of different loads being transferred towards the front abutment and panel sides. Subsequently, based on the load transfer mechanisms, a series of formulae were derived for the average static and dynamic stresses in the island pillar through theoretical analysis. Finally, the model was applied to determining the side abutment stress distribution of LW 3112 in the Chaoyang Coal Mine and the results of ground subsidence monitoring were used to verify the predicted model. It can be concluded that the proposed computational model can be successfully applied to determining the safety of mining in island longwall panels.展开更多
The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may inc...The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may increase the difficulty of stress control in the coal face and in its mining roadways, especially when the coal seam, the roof, and the floor have rock-burst propensities, The high energy accumulated in the island coal face and in its roof and floor will intensify rock-burst propensity or even induce rock burst, which further result in great casualties and financial losses. Taking island coal face 2321 in Jinqiao coal mine as a case, we propose a method for the prediction of rock-burst-threatened areas in an island coal face with weak rock-burst propensity. Based on the anaHysis of the movement of the overlying roof and characteristics of stress distribution, this method combined numerical simulation with drilling bits to ensure the prediction accuracy. The effects of coal pillars with different widths on the mitigation of stress concentration in the coal face and on the prevention of rock burst are analyzed together with the mech- anism behind. Finally, corresponding measures against the rock burst in the island coal face are proposed.展开更多
In this study,we established a dynamic ejection coal burst model for a coalmine roadway subject to stress,and held that the stress concentration zone at the roadway side is the direct energy source of this ejection.Th...In this study,we established a dynamic ejection coal burst model for a coalmine roadway subject to stress,and held that the stress concentration zone at the roadway side is the direct energy source of this ejection.The formation and development of such burst undergoes three stages:(1)instability and propagation of the cracks in the stress concentration zone,(2)emerging of a layered energy storage structure in the zone,and(3)ejection of coal mass or coal burst due to instability.Moreover,we figured out the initial strength of periodic cracks is parallel to the maximal dominant stress direction in the stress concentration zone and derived from the damage strain energy within the finite area of the zone based on the Griffith energy theory.In addition,we analyzed the formation process of the layered energy storage structure in the zone,simplified it as a simply supported restraint sheet,and calculated the minimum critical load and the internally accumulated elastic energy at the instable state.Furthermore,we established a criterion for occurrence of the coal burst based on the variational principle,and analyzed the coal mass ejection due to instability and coal burst induced by different intensity disturbances.At last,with the stratum conditions of Junde Coalmine as the model prototype,we numerically simulated the load displacement distribution of the stress concentration zone ahead of the working face disturbed by the main roof-fracture-induced dynamic load during the mining process as well as their varying characteristics,and qualitatively verified the above model.展开更多
Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth ...Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth of the pressure relief blast hole is too shallow, the surrounding rock of the roadway will be broken or even collapsed. If the pressure relief blast hole is too deep, the pressure relief area will be located in the deep part of the surrounding rock of the roadway, which cannot achieve the purpose of releasing the stress in the shallow part of the surrounding rock and cause waste of the blast hole. The width or range of the pressure relief area should just fall in the high stress area of the surrounding rock of the roadway, so the pressure relief blast hole should have a reasonable depth. In order to quantitatively describe the relationship between borehole depth and the width of the stress relief zone, numerical simulations were carried out in ANSYS according to different borehole depths. The results show that the optimal destressing effect is achieved when borehole depth is 4 m. Peak stress of and is significantly reduced by 30.51% and 49.07% after blasting. Meanwhile, the high-stress area shifts about 4.8 m from the roadside to the depth of surrounding rock, thus a 3.8 m wide stress relief zone is formed around the roadside, thus, the aim of quantizing the effects of destress blasting is achieved.展开更多
基金Project(2017CXNL01) supported by the Fundamental Research Funds for the Central Universities,China
文摘This study presents a novel approach using theoretical analysis to assess the risk of rock burst of an island longwall panel that accounts for the coupled behavior of stress distribution and overlying strata movement. The height of destressed zone(HDZ) above the mined panel was first determined based on the strain energy balance in an underground coal mining area. HDZ plays a vital role in accurately determining the amount of different loads being transferred towards the front abutment and panel sides. Subsequently, based on the load transfer mechanisms, a series of formulae were derived for the average static and dynamic stresses in the island pillar through theoretical analysis. Finally, the model was applied to determining the side abutment stress distribution of LW 3112 in the Chaoyang Coal Mine and the results of ground subsidence monitoring were used to verify the predicted model. It can be concluded that the proposed computational model can be successfully applied to determining the safety of mining in island longwall panels.
基金provided by the National Natural Science Foundation of China (Nos.51304208 and 51474208)
文摘The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may increase the difficulty of stress control in the coal face and in its mining roadways, especially when the coal seam, the roof, and the floor have rock-burst propensities, The high energy accumulated in the island coal face and in its roof and floor will intensify rock-burst propensity or even induce rock burst, which further result in great casualties and financial losses. Taking island coal face 2321 in Jinqiao coal mine as a case, we propose a method for the prediction of rock-burst-threatened areas in an island coal face with weak rock-burst propensity. Based on the anaHysis of the movement of the overlying roof and characteristics of stress distribution, this method combined numerical simulation with drilling bits to ensure the prediction accuracy. The effects of coal pillars with different widths on the mitigation of stress concentration in the coal face and on the prevention of rock burst are analyzed together with the mech- anism behind. Finally, corresponding measures against the rock burst in the island coal face are proposed.
基金supported by the Science Foundation of the National Natural Science Foundation of China(Nos.51634001and 51774023)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-18-007C1)
文摘In this study,we established a dynamic ejection coal burst model for a coalmine roadway subject to stress,and held that the stress concentration zone at the roadway side is the direct energy source of this ejection.The formation and development of such burst undergoes three stages:(1)instability and propagation of the cracks in the stress concentration zone,(2)emerging of a layered energy storage structure in the zone,and(3)ejection of coal mass or coal burst due to instability.Moreover,we figured out the initial strength of periodic cracks is parallel to the maximal dominant stress direction in the stress concentration zone and derived from the damage strain energy within the finite area of the zone based on the Griffith energy theory.In addition,we analyzed the formation process of the layered energy storage structure in the zone,simplified it as a simply supported restraint sheet,and calculated the minimum critical load and the internally accumulated elastic energy at the instable state.Furthermore,we established a criterion for occurrence of the coal burst based on the variational principle,and analyzed the coal mass ejection due to instability and coal burst induced by different intensity disturbances.At last,with the stratum conditions of Junde Coalmine as the model prototype,we numerically simulated the load displacement distribution of the stress concentration zone ahead of the working face disturbed by the main roof-fracture-induced dynamic load during the mining process as well as their varying characteristics,and qualitatively verified the above model.
文摘Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth of the pressure relief blast hole is too shallow, the surrounding rock of the roadway will be broken or even collapsed. If the pressure relief blast hole is too deep, the pressure relief area will be located in the deep part of the surrounding rock of the roadway, which cannot achieve the purpose of releasing the stress in the shallow part of the surrounding rock and cause waste of the blast hole. The width or range of the pressure relief area should just fall in the high stress area of the surrounding rock of the roadway, so the pressure relief blast hole should have a reasonable depth. In order to quantitatively describe the relationship between borehole depth and the width of the stress relief zone, numerical simulations were carried out in ANSYS according to different borehole depths. The results show that the optimal destressing effect is achieved when borehole depth is 4 m. Peak stress of and is significantly reduced by 30.51% and 49.07% after blasting. Meanwhile, the high-stress area shifts about 4.8 m from the roadside to the depth of surrounding rock, thus a 3.8 m wide stress relief zone is formed around the roadside, thus, the aim of quantizing the effects of destress blasting is achieved.