Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stab...Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently,the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of surrounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deformation, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value.展开更多
By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instr...By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instrumented five pairs of symmetrical strain gauges. The experimental results show that the fully grouted bolt suffers tensile, compressive, bending and shear stress at the same time. The bolt stress evolution is closely related to the deformation stages of the rock mass which are very gradually varying stage, gradually varying stage at the pre-peak and suddenly varying stage at the post peak stage.The axial compressive stress in the bolt is mainly induced by the moment. Thus, in most cases the axial compressive stress is distributed on one side of the bolt. For axial stresses, induced by the axial force and the bending moment at the post-peak stage, three types of changing are observed, viz. increasingincreasing type, decreasing-increasing type and increasing-decreasing type. The stress characteristics of the bolt section in the weak interlayer are significantly different from those in the hard rock. The failure models of the anchored bolt are tensile failure and shear failure, respectively. The bolt not only provides constraints on the free surface of the rock mass, but also resists the axial and lateral loading by the bending moment. This study provides valuable guidelines for bolting support design and its safety assessment.展开更多
Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to...Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to high horizontal stress in the longwall headgate and the requirements for supplemental roof support. In this study, a longwall headgate under high horizontal stress was instrumented to monitor stress change in the pillars, deformations in the roof, and load in the cable bolts. The conditions in the headgate were monitored for about six months as the longwall face passed by the instrumented site.The roof behavior in the headgate near the face was carefully observed during longwall retreat.Numerical modeling was performed to correlate the modeling results with underground observation and instrumentation data and to quantify the effect of high horizontal stress on roof stability in the longwall headgate. This paper discusses roof support requirements in the longwall headgate under high horizontal stress in regard to the pattern of supplemental cable bolts and the critical locations where additional supplemental support is necessary.展开更多
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w...A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.展开更多
AIM: To provide a structural model of the relationship between personality traits, perceived stress, coping strategies, social support, and psychological outcomes in the general population.METHODS: This is a cross sec...AIM: To provide a structural model of the relationship between personality traits, perceived stress, coping strategies, social support, and psychological outcomes in the general population.METHODS: This is a cross sectional study in which the study group was selected using multistage cluster and convenience sampling among a population of 4 million. For data collection, a total of 4763 individuals were asked to complete a questionnaire on demographics, personality traits, life events, coping with stress, social support, and psychological outcomes such as anxiety and depression. To evaluate the comprehensive relation-ship between the variables, a path model was fitted.RESULTS: The standard electronic modules showed that personality traits and perceived stress are important determinants of psychological outcomes. Social support and coping strategies were demonstrated to reduce the increasing cumulative positive effects of neuroticism and perceived stress on the psychological outcomes and enhance the protective effect of extraversion through decreasing the positive effect of perceived stress on the psychological outcomes. CONCLUSION: Personal resources play an important role in reduction and prevention of anxiety and depression. In order to improve the psychological health, it is necessary to train and reinforce the adaptive coping strategies and social support, and thus, to moderate negative personality traits.展开更多
The purpose of this study was to examine how academic stress and perceived social support influence the psychological wellbeing of Senior High School students in Ghana. Two hundred and twenty six male and female stude...The purpose of this study was to examine how academic stress and perceived social support influence the psychological wellbeing of Senior High School students in Ghana. Two hundred and twenty six male and female students participated. The general health questionnaire, student life-stress inventory and perceived social support from family and friends scales were used to assess psychological wellbeing, academic stress and perceived social support respectively. The results indicated that perceived social support buffered the effects of academic stress on psychological wellbeing. Girls reported higher scores on perceived social support but reported more depression. Boys reported higher academic stress and better psychological wellbeing, and these have been attributed partly to the socialisation role of gender. These results have policy implications in respect of the creation of a cordial school environment as well as encouraging a healthy interpersonal relationship between adolescents and their family and friends with the aim of reducing academic stress appraisal which is inimical to the psychological wellbeing of adolescents.展开更多
The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical examp...The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical example, the maximum contact stress ratio within the deflection range of rotary kiln supporting wheel is listed. The contact stress will increase largely when rotary kiln supporting wheel deflects with little angle, which probably will result in accidents correlating to safety. This will provide theory conference for the design, the operating condition analysis and adjusting of the rotary kiln.展开更多
For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformati...For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.展开更多
Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the inter...Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the interior of a semi-infnite solid were obtained by means of classical displacement function method in elasticity.The factors which influence stress of bolted surrounding rock,such as the length of bolt and tray effect,were analyzed.The absolute value of stress along bolt axes decreased rapidly with an increase in radical distance and the maximum appeared near ends of bolt.With increasing radical distance,the value of radical stress changed from positive to negative roughly and then increased to zero,with maximum at the middle of bolt.The evolution of hoop stress as radical distance increasing was similar with stress along bolt axes.With an increase in depth,the radical effect ranges of all normal stress components were reduced.These suggest that the effect from tray on stress along bolt axes of bolted surrounding rock could be neglected,except near surface of surrounding rock.展开更多
Objective To investigate the co-effect of Demand-control-support (DCS) model and Effort-reward Imbalance (ERI) model on the risk estimation of depression in humans in comparison with the effects when they are used...Objective To investigate the co-effect of Demand-control-support (DCS) model and Effort-reward Imbalance (ERI) model on the risk estimation of depression in humans in comparison with the effects when they are used respectively. Methods A total of 3 632 males and 1 706 females from 13 factories and companies in Henan province were recruited in this cross-sectional study. Perceived job stress was evaluated with the Job Content Questionnaire and Effort-Reward Imbalance Questionnaire (Chinese version). Depressive symptoms were assessed by using the Center for Epidemiological Studies Depression Scale (CES-D). Results DC (demands/job control ratio) and ERI were shown to be independently associated with depressive symptoms. The outcome of low social support and overcommitment were similar. High DC and low social support (SS), high ERI and high overcommitment, and high DC and high ERI posed greater risks of depressive symptoms than each of them did alone. ERI model and SS model seem to be effective in estimating the risk of depressive symptoms if they are used respectively. Conclusion The DC had better performance when it was used in combination with low SS. The effect on physical demands was better than on psychological demands. The combination of DCS and ERI models could improve the risk estimate of depressive symptoms in humans.展开更多
Despite the increasing popularity of mechanized coal mining, there are no convenient and accurate means available to measure the loads of powered supports. The measurement of such loads is important for monitoring min...Despite the increasing popularity of mechanized coal mining, there are no convenient and accurate means available to measure the loads of powered supports. The measurement of such loads is important for monitoring mine pressure and ensuring production safety. The load-carrying features of a powered support were used to develop a method for load measurement using the mag-netoelastic principle. A cross bridge-type magnetoelastic stress sensor was designed for the support structures to measure the different parts of the supports. Tests on single-body hydraulic cylinders and simulated linkages showed that an approximately linear relationship between the values of the sensor output signal and the loads borne by the hydraulic cylinders or linkages. The results were used to analyze the load-carrying measurements of powered supports with the cross bridge-type magnetoelastic stress sensor.展开更多
Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diamete...Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.展开更多
Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth ...Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth of the pressure relief blast hole is too shallow, the surrounding rock of the roadway will be broken or even collapsed. If the pressure relief blast hole is too deep, the pressure relief area will be located in the deep part of the surrounding rock of the roadway, which cannot achieve the purpose of releasing the stress in the shallow part of the surrounding rock and cause waste of the blast hole. The width or range of the pressure relief area should just fall in the high stress area of the surrounding rock of the roadway, so the pressure relief blast hole should have a reasonable depth. In order to quantitatively describe the relationship between borehole depth and the width of the stress relief zone, numerical simulations were carried out in ANSYS according to different borehole depths. The results show that the optimal destressing effect is achieved when borehole depth is 4 m. Peak stress of and is significantly reduced by 30.51% and 49.07% after blasting. Meanwhile, the high-stress area shifts about 4.8 m from the roadside to the depth of surrounding rock, thus a 3.8 m wide stress relief zone is formed around the roadside, thus, the aim of quantizing the effects of destress blasting is achieved.展开更多
In tunnel design, the determination of installation time and the stiffness of supporting structures is very important to the tunnel stability. This study used the convergence-confinement method to determine the stress...In tunnel design, the determination of installation time and the stiffness of supporting structures is very important to the tunnel stability. This study used the convergence-confinement method to determine the stress and displacement of the tunnel while considering the counter-pressure curve of the ground base, the stress release effect, and the interaction between the tunnel lining and the rock surrounding the tunnel chamber. The results allowed for the determination of the installation time, distribution and strength of supporting structures. This method was applied to the intake tunnel in the Ban Ve Hydroelectric Power Plant, in Nghe An Province, Vietnam. The results show that when a suitable displacement u0 ranging from 0.0865 m to 0.0919 m occurrs, we can install supporting structures that satisfy the stability and economical requirements.展开更多
In order to obtain enhanced plasma parameters a complete new tokamak HL-2M is now under construction in Southwestern Institute of Physics. To assure the structural safety of the device for the entire operation cycle, ...In order to obtain enhanced plasma parameters a complete new tokamak HL-2M is now under construction in Southwestern Institute of Physics. To assure the structural safety of the device for the entire operation cycle, one of the most important issues is the lifetime-limiting effects due to the pulsed operation mode. Fatigue is one of the major failure modes to be considered in mechanical design, and pulsed operation imposes stress with significant alternating components on the support structure (SS). Therefore, the reliability of the whole device is strongly affected by the stress and fatigue characteristic of the SS as the interface structure. This article introduces the SS design and details the fatigue life calculation methods based on the different characteristics of the sub-structures. The fatigue life in hazardous areas of the toroidal field coils anti-torque structure (TFCs-ATs) has been determined by non-linear analysis results. And with the stress- time history data of the vacuum vessel & poloidal field coils support structure (VV&PFCs SS), the fatigue analysis of the hot spots has been completed based on rain-flow counting method and linear cumulative damage method. The calculated minimum fatigue life on TFCs-ATs and VVSzPFCs SS is 4.743E+05 and 1.805E+06 cycles, respectively. And the calculated fatigue life on sub-structures can meet the required life for HL-2M tokamak: 1.0E+05 cycles.展开更多
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined...Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed.展开更多
基金Financial supports for this work, provided by the Major Program of the National Natural Science Foundation of China (Nos. 51174228 and 51474249)the Program for New Century Excellent Talents in University the Open Project of State Key Laboratory of Coal resources and Safe Mining, China University of Mining and Technology
文摘Roadway instability has been a major concern in the fields of mining engineering. This paper aims to provide practical and efficient strategy to support the roadways under high in-situ stress. A case study on the stability of deep roadways was carried out in an underground mine in Gansu province, China. Currently,the surrounding rock strata is extremely fractured, which results in a series of engineering disasters, such as side wall collapse and severe floor heave in the past decades. Aiming to solve these problems, an improved support method was proposed, which includes optimal bolt parameters and arrangement, floor beam layout by grooving, and full length grouting. Based on the modeling results by FLAC3D, the new support method is much better than the current one in terms of preventing the large deformation of surrounding rock and restricting the development of plastic zones. For implementation and verification, field experiments, along with deformation monitoring, were conducted in the 958 level roadway of Mining II areas. The results show that the improved support can significantly reduce surrounding rock deformation, avoid frequent repair, and maintain the long-term stability of the roadway. Compared to the original support, the new support method can greatly save investment of mines, and has good application value and popularization value.
基金support of the National Basic Research 973 Program of China (No.2013CB036003)the National Natural Science Foundation of China (No.51374198)the National Natural Science Foundation young investigator grant program of China (Nos.51204163,51504247,and 51404255)
文摘By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instrumented five pairs of symmetrical strain gauges. The experimental results show that the fully grouted bolt suffers tensile, compressive, bending and shear stress at the same time. The bolt stress evolution is closely related to the deformation stages of the rock mass which are very gradually varying stage, gradually varying stage at the pre-peak and suddenly varying stage at the post peak stage.The axial compressive stress in the bolt is mainly induced by the moment. Thus, in most cases the axial compressive stress is distributed on one side of the bolt. For axial stresses, induced by the axial force and the bending moment at the post-peak stage, three types of changing are observed, viz. increasingincreasing type, decreasing-increasing type and increasing-decreasing type. The stress characteristics of the bolt section in the weak interlayer are significantly different from those in the hard rock. The failure models of the anchored bolt are tensile failure and shear failure, respectively. The bolt not only provides constraints on the free surface of the rock mass, but also resists the axial and lateral loading by the bending moment. This study provides valuable guidelines for bolting support design and its safety assessment.
文摘Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to high horizontal stress in the longwall headgate and the requirements for supplemental roof support. In this study, a longwall headgate under high horizontal stress was instrumented to monitor stress change in the pillars, deformations in the roof, and load in the cable bolts. The conditions in the headgate were monitored for about six months as the longwall face passed by the instrumented site.The roof behavior in the headgate near the face was carefully observed during longwall retreat.Numerical modeling was performed to correlate the modeling results with underground observation and instrumentation data and to quantify the effect of high horizontal stress on roof stability in the longwall headgate. This paper discusses roof support requirements in the longwall headgate under high horizontal stress in regard to the pattern of supplemental cable bolts and the critical locations where additional supplemental support is necessary.
基金supported by the National Natural Science Foundation of China (No. 50874103)the National Basic Research Program of China (No. 2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK2008135)as well as by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No. SKLGDUEK0905)
文摘A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.
文摘AIM: To provide a structural model of the relationship between personality traits, perceived stress, coping strategies, social support, and psychological outcomes in the general population.METHODS: This is a cross sectional study in which the study group was selected using multistage cluster and convenience sampling among a population of 4 million. For data collection, a total of 4763 individuals were asked to complete a questionnaire on demographics, personality traits, life events, coping with stress, social support, and psychological outcomes such as anxiety and depression. To evaluate the comprehensive relation-ship between the variables, a path model was fitted.RESULTS: The standard electronic modules showed that personality traits and perceived stress are important determinants of psychological outcomes. Social support and coping strategies were demonstrated to reduce the increasing cumulative positive effects of neuroticism and perceived stress on the psychological outcomes and enhance the protective effect of extraversion through decreasing the positive effect of perceived stress on the psychological outcomes. CONCLUSION: Personal resources play an important role in reduction and prevention of anxiety and depression. In order to improve the psychological health, it is necessary to train and reinforce the adaptive coping strategies and social support, and thus, to moderate negative personality traits.
文摘The purpose of this study was to examine how academic stress and perceived social support influence the psychological wellbeing of Senior High School students in Ghana. Two hundred and twenty six male and female students participated. The general health questionnaire, student life-stress inventory and perceived social support from family and friends scales were used to assess psychological wellbeing, academic stress and perceived social support respectively. The results indicated that perceived social support buffered the effects of academic stress on psychological wellbeing. Girls reported higher scores on perceived social support but reported more depression. Boys reported higher academic stress and better psychological wellbeing, and these have been attributed partly to the socialisation role of gender. These results have policy implications in respect of the creation of a cordial school environment as well as encouraging a healthy interpersonal relationship between adolescents and their family and friends with the aim of reducing academic stress appraisal which is inimical to the psychological wellbeing of adolescents.
基金Supported by Hunan Provincial Natural Science Foundation(04JJ3050)Supported by Key ScientificResearch Projectof Hunan Provincial Education Bureau(03A052)
文摘The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical example, the maximum contact stress ratio within the deflection range of rotary kiln supporting wheel is listed. The contact stress will increase largely when rotary kiln supporting wheel deflects with little angle, which probably will result in accidents correlating to safety. This will provide theory conference for the design, the operating condition analysis and adjusting of the rotary kiln.
基金financially supported by the National Natural Science Foundation of China (Nos. 51474188, 51074140 and 51310105020)the Natural Science Foundation of Hebei Province (No. E2014203012)the Program for Taihang Scholars
文摘For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.
基金supported by the Special Funds of the National Natural Science Foundation of China(No.51227003)the National Natural Science Foundation of China(No.51074166)the Universities Natural Science Research Project of Jiangsu Province(No.11kjd13002)
文摘Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the interior of a semi-infnite solid were obtained by means of classical displacement function method in elasticity.The factors which influence stress of bolted surrounding rock,such as the length of bolt and tray effect,were analyzed.The absolute value of stress along bolt axes decreased rapidly with an increase in radical distance and the maximum appeared near ends of bolt.With increasing radical distance,the value of radical stress changed from positive to negative roughly and then increased to zero,with maximum at the middle of bolt.The evolution of hoop stress as radical distance increasing was similar with stress along bolt axes.With an increase in depth,the radical effect ranges of all normal stress components were reduced.These suggest that the effect from tray on stress along bolt axes of bolted surrounding rock could be neglected,except near surface of surrounding rock.
基金funded by Henan Provincial Health Science and Technology Key Projects(201001009)National Science and Technology Infrastructure Program(2006BAI06B 08),China
文摘Objective To investigate the co-effect of Demand-control-support (DCS) model and Effort-reward Imbalance (ERI) model on the risk estimation of depression in humans in comparison with the effects when they are used respectively. Methods A total of 3 632 males and 1 706 females from 13 factories and companies in Henan province were recruited in this cross-sectional study. Perceived job stress was evaluated with the Job Content Questionnaire and Effort-Reward Imbalance Questionnaire (Chinese version). Depressive symptoms were assessed by using the Center for Epidemiological Studies Depression Scale (CES-D). Results DC (demands/job control ratio) and ERI were shown to be independently associated with depressive symptoms. The outcome of low social support and overcommitment were similar. High DC and low social support (SS), high ERI and high overcommitment, and high DC and high ERI posed greater risks of depressive symptoms than each of them did alone. ERI model and SS model seem to be effective in estimating the risk of depressive symptoms if they are used respectively. Conclusion The DC had better performance when it was used in combination with low SS. The effect on physical demands was better than on psychological demands. The combination of DCS and ERI models could improve the risk estimate of depressive symptoms in humans.
文摘Despite the increasing popularity of mechanized coal mining, there are no convenient and accurate means available to measure the loads of powered supports. The measurement of such loads is important for monitoring mine pressure and ensuring production safety. The load-carrying features of a powered support were used to develop a method for load measurement using the mag-netoelastic principle. A cross bridge-type magnetoelastic stress sensor was designed for the support structures to measure the different parts of the supports. Tests on single-body hydraulic cylinders and simulated linkages showed that an approximately linear relationship between the values of the sensor output signal and the loads borne by the hydraulic cylinders or linkages. The results were used to analyze the load-carrying measurements of powered supports with the cross bridge-type magnetoelastic stress sensor.
基金National Natural Science Foundation of China(No.59235101)
文摘Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage.
文摘Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth of the pressure relief blast hole is too shallow, the surrounding rock of the roadway will be broken or even collapsed. If the pressure relief blast hole is too deep, the pressure relief area will be located in the deep part of the surrounding rock of the roadway, which cannot achieve the purpose of releasing the stress in the shallow part of the surrounding rock and cause waste of the blast hole. The width or range of the pressure relief area should just fall in the high stress area of the surrounding rock of the roadway, so the pressure relief blast hole should have a reasonable depth. In order to quantitatively describe the relationship between borehole depth and the width of the stress relief zone, numerical simulations were carried out in ANSYS according to different borehole depths. The results show that the optimal destressing effect is achieved when borehole depth is 4 m. Peak stress of and is significantly reduced by 30.51% and 49.07% after blasting. Meanwhile, the high-stress area shifts about 4.8 m from the roadside to the depth of surrounding rock, thus a 3.8 m wide stress relief zone is formed around the roadside, thus, the aim of quantizing the effects of destress blasting is achieved.
文摘In tunnel design, the determination of installation time and the stiffness of supporting structures is very important to the tunnel stability. This study used the convergence-confinement method to determine the stress and displacement of the tunnel while considering the counter-pressure curve of the ground base, the stress release effect, and the interaction between the tunnel lining and the rock surrounding the tunnel chamber. The results allowed for the determination of the installation time, distribution and strength of supporting structures. This method was applied to the intake tunnel in the Ban Ve Hydroelectric Power Plant, in Nghe An Province, Vietnam. The results show that when a suitable displacement u0 ranging from 0.0865 m to 0.0919 m occurrs, we can install supporting structures that satisfy the stability and economical requirements.
基金supported by National Magnetic Confinement Fusion Science Program of China(No.2013GB113001)
文摘In order to obtain enhanced plasma parameters a complete new tokamak HL-2M is now under construction in Southwestern Institute of Physics. To assure the structural safety of the device for the entire operation cycle, one of the most important issues is the lifetime-limiting effects due to the pulsed operation mode. Fatigue is one of the major failure modes to be considered in mechanical design, and pulsed operation imposes stress with significant alternating components on the support structure (SS). Therefore, the reliability of the whole device is strongly affected by the stress and fatigue characteristic of the SS as the interface structure. This article introduces the SS design and details the fatigue life calculation methods based on the different characteristics of the sub-structures. The fatigue life in hazardous areas of the toroidal field coils anti-torque structure (TFCs-ATs) has been determined by non-linear analysis results. And with the stress- time history data of the vacuum vessel & poloidal field coils support structure (VV&PFCs SS), the fatigue analysis of the hot spots has been completed based on rain-flow counting method and linear cumulative damage method. The calculated minimum fatigue life on TFCs-ATs and VVSzPFCs SS is 4.743E+05 and 1.805E+06 cycles, respectively. And the calculated fatigue life on sub-structures can meet the required life for HL-2M tokamak: 1.0E+05 cycles.
基金financial assistance provided by the National Natural Science Foundation of China (No. 51404262)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)the Basal Research Fund of China Central College (No. 2015QNA60)
文摘Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed.