Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (S...The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.展开更多
Water deficit is a limiting factor in sesame cultivars yield,thus identification of genetic mechanisms of sesame traits under water stress conditions is essential to development of water stress tolerant genotypes.Henc...Water deficit is a limiting factor in sesame cultivars yield,thus identification of genetic mechanisms of sesame traits under water stress conditions is essential to development of water stress tolerant genotypes.Hence,the triple test cross(TTC)analysis in F_(2) population of the sesame cross(NA_(76)NA_(54))was used.Since,30 TTC families with their 13 respective parents were evaluated during the summer season 2020 under two irrigation treatments.i.e.,normal irrigation with 5952.38 m^(3) hm^(-2) of applied water,and water stress with 2976.19 m^(3) hm^(-2) of applied water.This was implemented at the experimental field of Kafr El Hamam/Sharkia,Agricultural Research Station,Agricultural Research Center(ARC),Egypt.Additive(D)and dominance(H)gene actions as well as epistatic and its two components of additiveadditive,additivedominance plus dominancedominance were involved in the inheritance of all studied traits under both irrigation treatments and their combined analysis.The degree of dominance(H/D)^(0.5) verified the presence of partial dominance in most cases.The correlation coefficient between sums(additive)and differences(dominance)was non-significant,showing that dominant genes between lines were ambidirectional.The moderately water stress tolerant TTC families as the best selected families were found in families 22,25,10,12,and 15.Therefore,postponing selection in these selected families to later segregating generations for all studied traits would be effective to exploit the positive effects of additiveadditive epistasis.展开更多
The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5% NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS. The SCC susceptibility was estimated with the loss of...The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5% NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS. The SCC susceptibility was estimated with the loss of the reduction in area. The experimental results indicate that the SCC susceptibility of 7A52 aluminum alloy in 3.5% chloride solution is the highest at strain rate of 1×10-6 s-1. The lowest one is under the condition of 1×10-5 s-1. Stress concentration and anode dissolving around Al-Fe-Mn intermetallics initiate micropores which will result in microcracks. The existence of intermetallics in the microstructure may play an important role in understanding the SCC initiation mechanisms of 7A52 aluminum alloy.展开更多
Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum al...Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.展开更多
The development of the cotton fiber is very sensitive to temperature variation, and high temperature stress often causes reduced fiber yield and fiber quality. Short-term high temperature stress often occurs during co...The development of the cotton fiber is very sensitive to temperature variation, and high temperature stress often causes reduced fiber yield and fiber quality. Short-term high temperature stress often occurs during cotton production, but little is known about the specific timing and duration of stress that affects fiber development. To make this clear, pot experiments were carried in 2014 and 2015 in a climate chamber using cotton cultivars HY370WR(less sensitive variety) and Sumian 15(heat sensitive variety), which present different temperature sensitivities. Changes of the most important fiber quality indices(i.e., fiber length, fiber strength and marcironaire) and three very important fiber development components(i.e., cellulose, sucrose and callose) were analyzed to define the time window and critical duration to the high temperature stress at 34°C(max38°C/min30°C). When developing bolls were subjected to 5 days of high temperature stress at different days post-anthesis(DPA), the changes(Δ%) of fiber length, strength and micronire, as a function of imposed time followed square polynomial eq. as y=a+bx+cx^2, and the time around 15 DPA was the most sensitive period for fiber quality development in response to heat stress. When 15 DPA bolls were heat-stressed for different durations(2, 3, 4, 5, 6, 7 days), the changes(Δ%) of fiber length, strength and micronire, as a function of stress duration followed logistic equations y=A_1-A_2/1+(x/x_0)~p+A_2. Referred to that 5, 10 and 15% are usually used as criteria to decide whether techniques are effective or changes are significant in crop culture practice and reguard to the fiber quality indices change range, we suggested that 5% changes of the major fiber quality indices(fiber length, fiber strength and micronaire) and 10% changes of fiber development components(cellulose, sucrose and callose) could be taken as criteria to judge whether fiber development and fiber quality have been significantly affected by high temperature stress. The key time window for cotton fiber development in response to the high temperature stress was 13–19 DPA, and the critical duration was about 5 days.展开更多
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
基金financially supported by the State Key Fundamental Research Program of China (No. 2005CB623706)
文摘The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.
文摘Water deficit is a limiting factor in sesame cultivars yield,thus identification of genetic mechanisms of sesame traits under water stress conditions is essential to development of water stress tolerant genotypes.Hence,the triple test cross(TTC)analysis in F_(2) population of the sesame cross(NA_(76)NA_(54))was used.Since,30 TTC families with their 13 respective parents were evaluated during the summer season 2020 under two irrigation treatments.i.e.,normal irrigation with 5952.38 m^(3) hm^(-2) of applied water,and water stress with 2976.19 m^(3) hm^(-2) of applied water.This was implemented at the experimental field of Kafr El Hamam/Sharkia,Agricultural Research Station,Agricultural Research Center(ARC),Egypt.Additive(D)and dominance(H)gene actions as well as epistatic and its two components of additiveadditive,additivedominance plus dominancedominance were involved in the inheritance of all studied traits under both irrigation treatments and their combined analysis.The degree of dominance(H/D)^(0.5) verified the presence of partial dominance in most cases.The correlation coefficient between sums(additive)and differences(dominance)was non-significant,showing that dominant genes between lines were ambidirectional.The moderately water stress tolerant TTC families as the best selected families were found in families 22,25,10,12,and 15.Therefore,postponing selection in these selected families to later segregating generations for all studied traits would be effective to exploit the positive effects of additiveadditive epistasis.
基金Funded by the National Natural Science Foundation of China (No. 50801066)
文摘The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5% NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS. The SCC susceptibility was estimated with the loss of the reduction in area. The experimental results indicate that the SCC susceptibility of 7A52 aluminum alloy in 3.5% chloride solution is the highest at strain rate of 1×10-6 s-1. The lowest one is under the condition of 1×10-5 s-1. Stress concentration and anode dissolving around Al-Fe-Mn intermetallics initiate micropores which will result in microcracks. The existence of intermetallics in the microstructure may play an important role in understanding the SCC initiation mechanisms of 7A52 aluminum alloy.
基金financially supported by the National Natural Science Foundation of China(No.51371039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Jiangsu Province,China
文摘Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.
基金funded by the National Natural Science Foundation of China(31271654,31471444)the Natural Science Foundation of Jiangsu Province,China(BK20131318)
文摘The development of the cotton fiber is very sensitive to temperature variation, and high temperature stress often causes reduced fiber yield and fiber quality. Short-term high temperature stress often occurs during cotton production, but little is known about the specific timing and duration of stress that affects fiber development. To make this clear, pot experiments were carried in 2014 and 2015 in a climate chamber using cotton cultivars HY370WR(less sensitive variety) and Sumian 15(heat sensitive variety), which present different temperature sensitivities. Changes of the most important fiber quality indices(i.e., fiber length, fiber strength and marcironaire) and three very important fiber development components(i.e., cellulose, sucrose and callose) were analyzed to define the time window and critical duration to the high temperature stress at 34°C(max38°C/min30°C). When developing bolls were subjected to 5 days of high temperature stress at different days post-anthesis(DPA), the changes(Δ%) of fiber length, strength and micronire, as a function of imposed time followed square polynomial eq. as y=a+bx+cx^2, and the time around 15 DPA was the most sensitive period for fiber quality development in response to heat stress. When 15 DPA bolls were heat-stressed for different durations(2, 3, 4, 5, 6, 7 days), the changes(Δ%) of fiber length, strength and micronire, as a function of stress duration followed logistic equations y=A_1-A_2/1+(x/x_0)~p+A_2. Referred to that 5, 10 and 15% are usually used as criteria to decide whether techniques are effective or changes are significant in crop culture practice and reguard to the fiber quality indices change range, we suggested that 5% changes of the major fiber quality indices(fiber length, fiber strength and micronaire) and 10% changes of fiber development components(cellulose, sucrose and callose) could be taken as criteria to judge whether fiber development and fiber quality have been significantly affected by high temperature stress. The key time window for cotton fiber development in response to the high temperature stress was 13–19 DPA, and the critical duration was about 5 days.