In this paper,such a new lateral displacement function is proposed that the lateral flow velocity is con- tinuous at the entry and the exit of deformation zone.A new kind of finite strip method—the third power B-spli...In this paper,such a new lateral displacement function is proposed that the lateral flow velocity is con- tinuous at the entry and the exit of deformation zone.A new kind of finite strip method—the third power B-spline finite strip method—is put forward to simulate strip rolling process.Front and back tension stresses are formulated.The computed results of the transverse distributions of the front and back tension stresses are close to the experimental results.The paper lays a foundation for further analysing the three-dimensional stresses and deformations of strip rolling.展开更多
The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse ...The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.展开更多
To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embe...To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embedded blocks to avoid a border artefact described earlier. Results showed that: 1) no gelatinous fibres were observed under a growth strain level from 0.06% to 0.08%; 2) almost all of the non-conductive tissues contained gelatinous fibres above a growth strain level from 0.15% to 0.19%; 3) the amount of fibres, the amount of fibres with gelatinous layer, per unit of tissue area, and the thickness of the gelatinous layers controlled most of the magnitude of growth stress; 4) the contribution of the S2 layer in both fibre types could also play a role in the growth stress generation.展开更多
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo...A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.展开更多
The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper dedu...The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions. By using the U-transformation technique and the finite element method, the analytical displacement solutions of the finite element equations are derived in the series form. Therefore, the stress concentration can then be discussed easily and conveniently. For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method. The stress concentration factors for various ratios of height to width of the hole are obtained.展开更多
Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate...Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate design data. After a further sensitive analysis is carried out, the related parameters choice and control methods are recommended in the engineering practice. By taking the extreme environment conditions into consideration, the effects of bending stress reduction and curve control are analyzed, and the 3-D FE models are established by ABQOUS for numerical evaluation to verify the correctness of design results. At last, dynamic analysis and fatigue analysis, based on actual project, are carried out with designed stress joint. The analysis results prove the feasibility and guidance of this method in the practical engineering applications.展开更多
In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a &...In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a "round-house" type tensile stress-strain curve with low Y/T ratio,highly uniform elongation and high n-value,which means PF + B microstructure has the best deformability(i.e.Ideal stress-strain behavior) among the four microstructures.The steel with acicular ferrite-martensite&austenite(AF + MA) microstructure has a "continuous-yielding" type tensile stress-strain curve,whose deformability is worse than that of PF + B microstructure.Both the steels of polygonal ferrite-acicular ferrite(PF + AF) and polygonal ferrite-pearlite (PF+P) microstructure have "luders elongation" type tensile stress-strain curve with high Y/T ratio,low uniform elongation and low n-value,which means PF + AF and PF + P microstructures have the worst deformability among the four microstructures.展开更多
Objective:To investigate the load displacement curves of deep fascia of leg in response to the Tension Stress principle during limb lengthening. Methods:Limb lengthening animal model was established in New Zealand whi...Objective:To investigate the load displacement curves of deep fascia of leg in response to the Tension Stress principle during limb lengthening. Methods:Limb lengthening animal model was established in New Zealand white rabbits using a unilateral external fixator applied with four pins to the medial surface of tibia and monofocal proximal diaphysis with closed multiple drill holes and osteoclasis between the second and the third pins.Seven days after operation,distraction was initiated at distraction rates of 1mm/day and 2mm/day in two steps,and proceeded until increases of 10% and 20% in the initial length of tibia had been achieved.The fascia samples of 30mm×10mm were clamped with the Instron 1122 tensile test device at room temperature with the constant tensile rate of 5mm/min.After 5 load download tensile tests had been performed,the samples were elongated until rupture.And the load displacement curves were automatically generated. Results:The normal fascias showed typical load displacement rule of collagenous tissues.And each experimental group of fascias kept the characteristics.The curves of fascias at a rate of 1mm/day were closer to the curves of normal fascias.For the normal fascias,the ultimate tension strength was avarage 2.69N,and the strain at rupture was avarage 14.11%.And the ultimate tension strength of the fascias after limb lengthening increased. Conclusion:These results prove that the Tension Stress during limb lengthening has great effect upon the load displacement curves of fascia.The curves of fascia at a distraction rate of 1mm/day were closer to the curves of normal fascia.展开更多
Two explicit expressions of the stress concentration factor for a tension finite-width strip with a central elliptical hole and an eccentric elliptical hole, respectively, are formulated by using a semi-analytical and...Two explicit expressions of the stress concentration factor for a tension finite-width strip with a central elliptical hole and an eccentric elliptical hole, respectively, are formulated by using a semi-analytical and semi-empiricai method. Accuracy of the results obtained from these expressions is better, and application scope is wider, than the results of Durelli's photo-elastic experiment and Isida's formula. When eccentricity of the elliptical hole is within a certain range, the error is less than 8%. Based on the relation between the stress concentration factor and the stress intensity factor, a stress intensity factor expression for tension strips with a center or an eccentric crack is derived with the obtained stress concentration factor expressions. Compared with the existing formulae and the finite element analysis, this stress intensity factor expression also has sufficient accuracy.展开更多
The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compa...The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compared. The results show that the effect of the former is better than that of the latter. Applying an external tension load of 200 MPa after welding, the maximum residual stress drops down from 235 MPa to about 90 MPa, moreover, it decreases to 30MPa when an external tension load of 200 MPa is applied during welding.展开更多
The strain monitoring and stress analysis of a new type of post-prestressed tunnel liner were carried out. The instrumentation block of the tunnel liner, with the dimensions of 12.06 m in length, 6 500 mm in diameter,...The strain monitoring and stress analysis of a new type of post-prestressed tunnel liner were carried out. The instrumentation block of the tunnel liner, with the dimensions of 12.06 m in length, 6 500 mm in diameter, and 650 mm in thickness, was post-prestressed with the unbonded tendons, each of which consists of 8 pieces of double-looped strands and the axial spacing of the tendons is 500 mm. Concrete strain meters, rebar meters, load cell and zero-stress meters were installed for the strain monitoring. The tensioning loads were applied incrementally in three cycles (50%, 77% and 100%) at the concrete age of 28 d and the tensioning work lasted for 187.1 h. Strain readings were taken before and after each cycle during tensioning period and at the specified time interval after tensioning period. It is found that concrete creep developed over tensioning period is 30% of total strain and 41.5% of elastic strain respectively. Prestress force in the unbonded tendon and concrete stress in the liner were evaluated according to the observed strain variations. Both of them are time-dependent, and about 5.3%, 8.3% and 9.0% of the prestress losses are observed at the age of 1 d, 30 d and 60 d respectively after stressing. The distribution of prestress in the liner is relatively uniform and meets the design requirement.展开更多
The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (S...The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.展开更多
In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield stre...In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process.展开更多
The discovery of ferroelectricity in HfO_(2) based materials reactivated the research on ferroelectric memory.However,the complete mechanism underlying its ferroelectricity remains to be fully elucidated.In this study...The discovery of ferroelectricity in HfO_(2) based materials reactivated the research on ferroelectric memory.However,the complete mechanism underlying its ferroelectricity remains to be fully elucidated.In this study,we conducted a systematic study on the microstructures and ferroelectric properties of Hf_(0.5)Zr_(0.5)O_(2)(HZO)thin films with various annealing rates in the rapid thermal annealing.It was observed that the HZO thin films with higher annealing rates demonstrate smaller grain size,reduced surface roughness and a higher portion of orthorhombic phase.Moreover,these films exhibited enhanced polarization values and better fatigue cycles compared to those treated with lower annealing rates.The grazing incidence x-ray diffraction measurements revealed the existence of tension stress in the HZO thin films,which was weakened with decreasing annealing rate.Our findings revealed that this internal stress,along with the stress originating from the top/bottom electrode,plays a crucial role in modulating the microstructure and ferroelectric properties of the HZO thin films.By carefully controlling the annealing rate,we could effectively regulate the tension stress within HZO thin films,thus achieving precise control over their ferroelectric properties.This work established a valuable pathway for tailoring the performance of HZO thin films for various applications.展开更多
Cold-rolled thin strip steel of high flatness quality undergoes multistage deformation during tension leveling. Thus, the parameters of set-up and manipulating are more difficult. With the aid of FE code MSC. MARC, th...Cold-rolled thin strip steel of high flatness quality undergoes multistage deformation during tension leveling. Thus, the parameters of set-up and manipulating are more difficult. With the aid of FE code MSC. MARC, the tension leveling process of thin strip steel was numerically simulated. Concentrating on the influence of the roll intermeshes in 2# anti-cambering on the distribution and magnitude of residual stresses in leveled strip steel, several experiments were clone with the tension leveler based on the results from the simulation. It was found from the simulation that the magnitude of longitudinal residual stresses in the cross-section of the leveled strip steel regularly presents obvious interdependence with the roll intermeshes in 2# anti-cambering. In addition, there is a steady zone as the longitudinal residual stresses of the surface layers in leveled strip steel vary with the roll intermeshes of 2# anticambering, which is of importance in the manipulation of tension levelers. It was also found that the distribution of strains and stresses across the width of strip steel is uneven during leveling or after removing the tension loaded upon the strip, from which it was found that 3D simulation could not be replaced by 2D analysis because 2D analysis in this case cannot represent the physical behavior of strip steel deformation during tension leveling.展开更多
Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle ...Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle out of the sand dunes, these main targets are gradually eroded and displaced by the wind on dozens of meters. This experience highlights the action of wind on granular targets (clusters of sand or water slides) and motivates studies similar to ours, where we want to simulate impact of wind stress and breaking on the spatio-temporal evolution of the envelope of ocean relatively high waves: Impact which can inappropriately deflect the waves on ships, oil platforms or coastal infrastructures. Euler and Navier-Stokes equations allow a mathematical formulation of the gravity wave motion (ocean waves are considered in our work as a system of water particles which are held together by low surface tension) and wind acts on targets through friction forces or stress. Michel Talon stationary phase method is used to numerically solve the equations that model the impact of wind on a stationary Gaussian.展开更多
文摘In this paper,such a new lateral displacement function is proposed that the lateral flow velocity is con- tinuous at the entry and the exit of deformation zone.A new kind of finite strip method—the third power B-spline finite strip method—is put forward to simulate strip rolling process.Front and back tension stresses are formulated.The computed results of the transverse distributions of the front and back tension stresses are close to the experimental results.The paper lays a foundation for further analysing the three-dimensional stresses and deformations of strip rolling.
基金Funded by the Science and Technolog Program of Ministry of Transport of P.R.China(No.2012318352100)
文摘The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.
文摘To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embedded blocks to avoid a border artefact described earlier. Results showed that: 1) no gelatinous fibres were observed under a growth strain level from 0.06% to 0.08%; 2) almost all of the non-conductive tissues contained gelatinous fibres above a growth strain level from 0.15% to 0.19%; 3) the amount of fibres, the amount of fibres with gelatinous layer, per unit of tissue area, and the thickness of the gelatinous layers controlled most of the magnitude of growth stress; 4) the contribution of the S2 layer in both fibre types could also play a role in the growth stress generation.
基金Funded by Regulation RevisingItemof China Associationfor En-gineering Construction Standardization (CECS 15 :2000)
文摘A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.
基金supported by the National Natural Science Foundation of China (No.10772202)the Chinese PostdoctoralScience Foundation (No.20060400757).
文摘The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions. By using the U-transformation technique and the finite element method, the analytical displacement solutions of the finite element equations are derived in the series form. Therefore, the stress concentration can then be discussed easily and conveniently. For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method. The stress concentration factors for various ratios of height to width of the hole are obtained.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant No. 2008AA09A105-04)
文摘Stress Joint (SJ) plays a key role in the Top Tensioned Riser (TTR) system for deep water engineering. A preliminary design method of tapered SJ is proposed in the paper, which could help designers obtain accurate design data. After a further sensitive analysis is carried out, the related parameters choice and control methods are recommended in the engineering practice. By taking the extreme environment conditions into consideration, the effects of bending stress reduction and curve control are analyzed, and the 3-D FE models are established by ABQOUS for numerical evaluation to verify the correctness of design results. At last, dynamic analysis and fatigue analysis, based on actual project, are carried out with designed stress joint. The analysis results prove the feasibility and guidance of this method in the practical engineering applications.
文摘In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a "round-house" type tensile stress-strain curve with low Y/T ratio,highly uniform elongation and high n-value,which means PF + B microstructure has the best deformability(i.e.Ideal stress-strain behavior) among the four microstructures.The steel with acicular ferrite-martensite&austenite(AF + MA) microstructure has a "continuous-yielding" type tensile stress-strain curve,whose deformability is worse than that of PF + B microstructure.Both the steels of polygonal ferrite-acicular ferrite(PF + AF) and polygonal ferrite-pearlite (PF+P) microstructure have "luders elongation" type tensile stress-strain curve with high Y/T ratio,low uniform elongation and low n-value,which means PF + AF and PF + P microstructures have the worst deformability among the four microstructures.
文摘Objective:To investigate the load displacement curves of deep fascia of leg in response to the Tension Stress principle during limb lengthening. Methods:Limb lengthening animal model was established in New Zealand white rabbits using a unilateral external fixator applied with four pins to the medial surface of tibia and monofocal proximal diaphysis with closed multiple drill holes and osteoclasis between the second and the third pins.Seven days after operation,distraction was initiated at distraction rates of 1mm/day and 2mm/day in two steps,and proceeded until increases of 10% and 20% in the initial length of tibia had been achieved.The fascia samples of 30mm×10mm were clamped with the Instron 1122 tensile test device at room temperature with the constant tensile rate of 5mm/min.After 5 load download tensile tests had been performed,the samples were elongated until rupture.And the load displacement curves were automatically generated. Results:The normal fascias showed typical load displacement rule of collagenous tissues.And each experimental group of fascias kept the characteristics.The curves of fascias at a rate of 1mm/day were closer to the curves of normal fascias.For the normal fascias,the ultimate tension strength was avarage 2.69N,and the strain at rupture was avarage 14.11%.And the ultimate tension strength of the fascias after limb lengthening increased. Conclusion:These results prove that the Tension Stress during limb lengthening has great effect upon the load displacement curves of fascia.The curves of fascia at a distraction rate of 1mm/day were closer to the curves of normal fascia.
基金supported by the National Natural Science Foundation of China (No. 51179115)
文摘Two explicit expressions of the stress concentration factor for a tension finite-width strip with a central elliptical hole and an eccentric elliptical hole, respectively, are formulated by using a semi-analytical and semi-empiricai method. Accuracy of the results obtained from these expressions is better, and application scope is wider, than the results of Durelli's photo-elastic experiment and Isida's formula. When eccentricity of the elliptical hole is within a certain range, the error is less than 8%. Based on the relation between the stress concentration factor and the stress intensity factor, a stress intensity factor expression for tension strips with a center or an eccentric crack is derived with the obtained stress concentration factor expressions. Compared with the existing formulae and the finite element analysis, this stress intensity factor expression also has sufficient accuracy.
文摘The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compared. The results show that the effect of the former is better than that of the latter. Applying an external tension load of 200 MPa after welding, the maximum residual stress drops down from 235 MPa to about 90 MPa, moreover, it decreases to 30MPa when an external tension load of 200 MPa is applied during welding.
基金Supported by National Natural Science Foundation of China (No. 50578110) .
文摘The strain monitoring and stress analysis of a new type of post-prestressed tunnel liner were carried out. The instrumentation block of the tunnel liner, with the dimensions of 12.06 m in length, 6 500 mm in diameter, and 650 mm in thickness, was post-prestressed with the unbonded tendons, each of which consists of 8 pieces of double-looped strands and the axial spacing of the tendons is 500 mm. Concrete strain meters, rebar meters, load cell and zero-stress meters were installed for the strain monitoring. The tensioning loads were applied incrementally in three cycles (50%, 77% and 100%) at the concrete age of 28 d and the tensioning work lasted for 187.1 h. Strain readings were taken before and after each cycle during tensioning period and at the specified time interval after tensioning period. It is found that concrete creep developed over tensioning period is 30% of total strain and 41.5% of elastic strain respectively. Prestress force in the unbonded tendon and concrete stress in the liner were evaluated according to the observed strain variations. Both of them are time-dependent, and about 5.3%, 8.3% and 9.0% of the prestress losses are observed at the age of 1 d, 30 d and 60 d respectively after stressing. The distribution of prestress in the liner is relatively uniform and meets the design requirement.
基金financially supported by the State Key Fundamental Research Program of China (No. 2005CB623706)
文摘The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.
基金supported by the Hydrogeology Survey And Comprehensive Evaluation of Large Basin and Deep Typical Southeast Coastal Region(No.12120114025101)
文摘In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62174059 and 52250281)the Science and Technology Projects of Guangzhou Province of China (Grant No.202201000008)+1 种基金the Guangdong Science and Technology Project-International Cooperation (Grant No.2021A0505030064)the Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials (Grant No.2020B1212060066)。
文摘The discovery of ferroelectricity in HfO_(2) based materials reactivated the research on ferroelectric memory.However,the complete mechanism underlying its ferroelectricity remains to be fully elucidated.In this study,we conducted a systematic study on the microstructures and ferroelectric properties of Hf_(0.5)Zr_(0.5)O_(2)(HZO)thin films with various annealing rates in the rapid thermal annealing.It was observed that the HZO thin films with higher annealing rates demonstrate smaller grain size,reduced surface roughness and a higher portion of orthorhombic phase.Moreover,these films exhibited enhanced polarization values and better fatigue cycles compared to those treated with lower annealing rates.The grazing incidence x-ray diffraction measurements revealed the existence of tension stress in the HZO thin films,which was weakened with decreasing annealing rate.Our findings revealed that this internal stress,along with the stress originating from the top/bottom electrode,plays a crucial role in modulating the microstructure and ferroelectric properties of the HZO thin films.By carefully controlling the annealing rate,we could effectively regulate the tension stress within HZO thin films,thus achieving precise control over their ferroelectric properties.This work established a valuable pathway for tailoring the performance of HZO thin films for various applications.
基金Item Sponsored by Korea Research Foundation (KRF-2004-005-D00111)
文摘Cold-rolled thin strip steel of high flatness quality undergoes multistage deformation during tension leveling. Thus, the parameters of set-up and manipulating are more difficult. With the aid of FE code MSC. MARC, the tension leveling process of thin strip steel was numerically simulated. Concentrating on the influence of the roll intermeshes in 2# anti-cambering on the distribution and magnitude of residual stresses in leveled strip steel, several experiments were clone with the tension leveler based on the results from the simulation. It was found from the simulation that the magnitude of longitudinal residual stresses in the cross-section of the leveled strip steel regularly presents obvious interdependence with the roll intermeshes in 2# anti-cambering. In addition, there is a steady zone as the longitudinal residual stresses of the surface layers in leveled strip steel vary with the roll intermeshes of 2# anticambering, which is of importance in the manipulation of tension levelers. It was also found that the distribution of strains and stresses across the width of strip steel is uneven during leveling or after removing the tension loaded upon the strip, from which it was found that 3D simulation could not be replaced by 2D analysis because 2D analysis in this case cannot represent the physical behavior of strip steel deformation during tension leveling.
文摘Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle out of the sand dunes, these main targets are gradually eroded and displaced by the wind on dozens of meters. This experience highlights the action of wind on granular targets (clusters of sand or water slides) and motivates studies similar to ours, where we want to simulate impact of wind stress and breaking on the spatio-temporal evolution of the envelope of ocean relatively high waves: Impact which can inappropriately deflect the waves on ships, oil platforms or coastal infrastructures. Euler and Navier-Stokes equations allow a mathematical formulation of the gravity wave motion (ocean waves are considered in our work as a system of water particles which are held together by low surface tension) and wind acts on targets through friction forces or stress. Michel Talon stationary phase method is used to numerically solve the equations that model the impact of wind on a stationary Gaussian.