期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Muse cells decrease the neuroinflammatory response by modulating the proportion of M1 and M2 microglia in vitro 被引量:2
1
作者 Xin-Yao Yin Chen-Chun Wang +6 位作者 Pan Du Xue-Song Wang Yi-Chi Lu Yun-Wei Sun Yue-Hui Sun Yi-Man Hu Xue Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期213-218,共6页
Neuroinflammation hinders repair of the central nervous system(CNS).Stem cell transplantation is a very promising approach for treatment of CNS injuries.However,it is difficult to select seed cells that can both facil... Neuroinflammation hinders repair of the central nervous system(CNS).Stem cell transplantation is a very promising approach for treatment of CNS injuries.However,it is difficult to select seed cells that can both facilitate nerve regeneration and improve the microenvironment in the CNS.In this study,we isolated multilineage-differentiating stress-enduring(Muse)cells from bone marrow mesenchymal stem cells.We explored the anti-inflammatory effect and mechanism of Muse cells in vitro by coculture of Muse cells with lipopolysaccharide-stimulated microglia.Our results showed that Muse cells effectively reduced the transcription and secretion of tumor necrosis factorαand interleukin-1βand increased the expression of transforming growth factor-βand interleukin-10 in microglia.In addition,Muse cells decreased the number of M1 microglia and increased the proportion of M2 microglia in an inflammatory environment more effectively than bone marrow mesenchymal stem cells.We also show that Muse cells inhibited the protein expression of toll-like receptor 4(TLR4)and myeloid differentiation primary response protein(MyD88)and inhibited the expression of the phosphorylated forms of transcription factor p65,nuclear factor(NF)-κB inhibitor alpha,and p38 mitogen-activated protein kinase(MAPK)in microglia.Therefore,we suggest Muse cells cause antineuroinflammatory effects by inhibition of the TLR4/MyD88/NF-κB and p38 MAPK signaling pathways in microglia.Our results shed light on the function of Muse cells in relation to CNS diseases and provide insight into the selection of seed cells. 展开更多
关键词 bone marrow mesenchymal stem cells central nervous system lipopolysaccharide multilineage-differentiating stress-enduring cells NEUROINFLAMMATION MICROGLIA signaling pathway
下载PDF
Adipose tissue in bone regeneration-stem cell source and beyond 被引量:1
2
作者 Luminita Labusca 《World Journal of Stem Cells》 SCIE 2022年第6期372-392,共21页
Adipose tissue(AT)is recognized as a complex organ involved in major homeostatic body functions,such as food intake,energy balance,immunomodulation,development and growth,and functioning of the reproductive organs.The... Adipose tissue(AT)is recognized as a complex organ involved in major homeostatic body functions,such as food intake,energy balance,immunomodulation,development and growth,and functioning of the reproductive organs.The role of AT in tissue and organ homeostasis,repair and regeneration is increasingly recognized.Different AT compartments(white AT,brown AT and bone marrow AT)and their interrelation with bone metabolism will be presented.AT-derived stem cell populations-adipose-derived mesenchymal stem cells and pluripotentlike stem cells.Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources.Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described.The current use of AT-or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented,as well as major challenges in furthering bone regenerative strategies to clinical settings. 展开更多
关键词 Adipose tissue Bone metabolism Fracture healing Adipose-derived stem cells Multilineage differentiating stress-enduring Dedifferentiated fat cells Bone engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部