A rational equation of state of the perturbation type with a repulsion and attraction term has been applied to reproduce critical curves of six different binary systems up to high temperatures and pressures. A square ...A rational equation of state of the perturbation type with a repulsion and attraction term has been applied to reproduce critical curves of six different binary systems up to high temperatures and pressures. A square well potential for intermolecular interaction is used. With pairwise combination rules for these potentials three adjustable parameters are needed. The experimental critical point and phase equilibrium data are compared with the values predicted using the equation of state. Good agreement is obtained for the analysis of the critical pressure composition data and molar volumes.展开更多
This article studies the existence of analytic invariant curves for a nonlinear second order difference equation which was modeled from macroeconomics of the business cycle. The author not only discusses the case of t...This article studies the existence of analytic invariant curves for a nonlinear second order difference equation which was modeled from macroeconomics of the business cycle. The author not only discusses the case of the eigenvalue off the unit circle S^1 and the case on S^1 with the Diophantine condition but also considers the case of the eigenvalue at a root of the unity, which obviously violates the Diophantine condition.展开更多
Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those e...Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.展开更多
The basic objects of investigation in this article are nonlinear impulsive dif- ferential equations. The impulsive moments coincide with the moments of meeting of the integral curve and some of the so-called barrier c...The basic objects of investigation in this article are nonlinear impulsive dif- ferential equations. The impulsive moments coincide with the moments of meeting of the integral curve and some of the so-called barrier curves. For such type of equations, suf- ficient conditions are found under which the solutions are continuously dependent on the perturbations with respect to the initial conditions and barrier curves. The results are applied to a mathematical model of population dynamics.展开更多
The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plo...The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.展开更多
In this paper five equations of state are tested for checking their ability to predict the Joule-Thomson inversion curve.These five equations of state are:Mohsennia-Modarres-Mansoori(MMM),Ji-Lemp(JL),modified Soave-Re...In this paper five equations of state are tested for checking their ability to predict the Joule-Thomson inversion curve.These five equations of state are:Mohsennia-Modarres-Mansoori(MMM),Ji-Lemp(JL),modified Soave-Redlich-Kwang(SRK)equation of state by Graboski(MSRK1),modified SRK equation of state by Peneloux and Rauzy(MSRK2),and modified Peng-Robinson (PR)equation of state by Rauzy(PRmr).The investigated equations of state give good prediction of the low-temperature branch of the inversion curve,except for MMM equation of state.The high-temperature branch and the peak of the inversion curve have been observed,in general,to be sensitive to the applied equation of state.The values of the maximum inversion temperature and maximum inversion pressure are calculated for each component used in this work.展开更多
Bifurcation of the invariant curves of a difference equation is studied. The system defined by the difference equation is integrable, so the study of the invariant curves of the difference system can become the study ...Bifurcation of the invariant curves of a difference equation is studied. The system defined by the difference equation is integrable, so the study of the invariant curves of the difference system can become the study of topological classification of the planar phase portraits defined by a planar Hamiltonian system. By strict qualitative analysis, the classification of the invariant curves in parameter space can be obtained.展开更多
The theory of if-E curve in cyclic derivative chronopotentiometry is presented. Theoretical equations of if-E curves in the case of quasi-reversible and irreversible electrode reactions are deduced respectively.
This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and...This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and uniqueness of solutions for such boundary value problem. Then by using the methods of successive iteration and parameter extension, the existence of solutions for this problem is proved.展开更多
In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton princip...In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.展开更多
On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘prob...On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.展开更多
We derive the Schr6dinger equation of a particle constrained to move on a rotating curved surface S. Using the thin-layer quantization scheme to confine the particle on S, and with a proper choice of gauge transformat...We derive the Schr6dinger equation of a particle constrained to move on a rotating curved surface S. Using the thin-layer quantization scheme to confine the particle on S, and with a proper choice of gauge transformation for the wave function, we obtain the well-known geometric potentiM Vg and an additive Coriolis-induced geometric potential in the co-rotationM curvilinear coordinates. This novel effective potential, which is included in the surface Schr6dinger equation and is coupled with the mean curvature of S, contains an imaginary part in the general case which gives rise to a non-Hermitian surface Hamiltonian. We find that the non-Hermitian term vanishes when S is a minimal surface or a revolution surface which is axially symmetric around the rolling axis.展开更多
Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding...Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding a suitable small positive integer s such that q^s can be represented as some very sparse φ-polynomial is proposed. If a Normal Basis (NB) or Optimal Normal Basis (ONB) is applied and the precomputations are considered free, our algorithm will cost, on average, about 55% to 80% less than binary method, and about 42% to 74% less than φ-ary method. For some elliptic curves, our algorithm is also taster than Mǖller's algorithm. In addition, an effective algorithm is provided for finding such integer s.展开更多
In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in ...In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.展开更多
In the present work it is shown that the generalized Van-der-Waals-Berthelot equation describes the evaporation curves (saturation curves) for alkali metals with good accuracy. This result is obtained on the basis o...In the present work it is shown that the generalized Van-der-Waals-Berthelot equation describes the evaporation curves (saturation curves) for alkali metals with good accuracy. This result is obtained on the basis of the calculations performed by the author for thermodynamic parameters of the saturation curves described by the generalized Van-der-Waals-Berthelot equation.展开更多
To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE met...To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.展开更多
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calc...The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calculated stress-strain curve with the measured one, it can be seen that they fit each other very well. Thus, the FE model built in this work is effective. According to the above mentioned model, the distributions of stress and strain in the α and β phases were simulated. The results show that the stress gradients exist in both α and β phases, and the distributions of stress are inhomogeneous. The stress inside the phase is generally higher than that near the interface. Meanwhile, the stress in the α phase is lower than that in the β phase, whereas the strain in the α phase is higher than that in the β phase.展开更多
The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results i...The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.展开更多
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo...A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.展开更多
文摘A rational equation of state of the perturbation type with a repulsion and attraction term has been applied to reproduce critical curves of six different binary systems up to high temperatures and pressures. A square well potential for intermolecular interaction is used. With pairwise combination rules for these potentials three adjustable parameters are needed. The experimental critical point and phase equilibrium data are compared with the values predicted using the equation of state. Good agreement is obtained for the analysis of the critical pressure composition data and molar volumes.
基金supported by the Fund of Educational Reform Project of Guangxi Province of China (200710961)the Scientific Research Foundation of the Education Department of Guangxi Province of China (200707MS112)+1 种基金the Natural Science Fund of Hechi University (2006N001)the fund of Key discipline of applied mathematics of Hechi University (200725)
文摘This article studies the existence of analytic invariant curves for a nonlinear second order difference equation which was modeled from macroeconomics of the business cycle. The author not only discusses the case of the eigenvalue off the unit circle S^1 and the case on S^1 with the Diophantine condition but also considers the case of the eigenvalue at a root of the unity, which obviously violates the Diophantine condition.
基金Item Sponsored by National Natural Science Foundation of China(50271009)
文摘Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.
文摘The basic objects of investigation in this article are nonlinear impulsive dif- ferential equations. The impulsive moments coincide with the moments of meeting of the integral curve and some of the so-called barrier curves. For such type of equations, suf- ficient conditions are found under which the solutions are continuously dependent on the perturbations with respect to the initial conditions and barrier curves. The results are applied to a mathematical model of population dynamics.
基金funded by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.
文摘In this paper five equations of state are tested for checking their ability to predict the Joule-Thomson inversion curve.These five equations of state are:Mohsennia-Modarres-Mansoori(MMM),Ji-Lemp(JL),modified Soave-Redlich-Kwang(SRK)equation of state by Graboski(MSRK1),modified SRK equation of state by Peneloux and Rauzy(MSRK2),and modified Peng-Robinson (PR)equation of state by Rauzy(PRmr).The investigated equations of state give good prediction of the low-temperature branch of the inversion curve,except for MMM equation of state.The high-temperature branch and the peak of the inversion curve have been observed,in general,to be sensitive to the applied equation of state.The values of the maximum inversion temperature and maximum inversion pressure are calculated for each component used in this work.
文摘Bifurcation of the invariant curves of a difference equation is studied. The system defined by the difference equation is integrable, so the study of the invariant curves of the difference system can become the study of topological classification of the planar phase portraits defined by a planar Hamiltonian system. By strict qualitative analysis, the classification of the invariant curves in parameter space can be obtained.
基金Supported by the National Natural Science Foundation of China
文摘The theory of if-E curve in cyclic derivative chronopotentiometry is presented. Theoretical equations of if-E curves in the case of quasi-reversible and irreversible electrode reactions are deduced respectively.
基金Supported by the National Natural Science Foundation of China (10971224)
文摘This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and uniqueness of solutions for such boundary value problem. Then by using the methods of successive iteration and parameter extension, the existence of solutions for this problem is proved.
基金the National Natural Science Foundation of China(No.10532070)
文摘In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.
文摘On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.
基金Supported by the National Natural Science Foundation of China under Grants Nos 11047020,11404157,11274166,11275097,11475085 and 11535005the Natural Science Foundation of Shangdong Province under Grants Nos ZR2012AM022 and ZR2011AM019
文摘We derive the Schr6dinger equation of a particle constrained to move on a rotating curved surface S. Using the thin-layer quantization scheme to confine the particle on S, and with a proper choice of gauge transformation for the wave function, we obtain the well-known geometric potentiM Vg and an additive Coriolis-induced geometric potential in the co-rotationM curvilinear coordinates. This novel effective potential, which is included in the surface Schr6dinger equation and is coupled with the mean curvature of S, contains an imaginary part in the general case which gives rise to a non-Hermitian surface Hamiltonian. We find that the non-Hermitian term vanishes when S is a minimal surface or a revolution surface which is axially symmetric around the rolling axis.
基金Supported by the National 973 High Technology Projects (No. G1998030420)
文摘Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding a suitable small positive integer s such that q^s can be represented as some very sparse φ-polynomial is proposed. If a Normal Basis (NB) or Optimal Normal Basis (ONB) is applied and the precomputations are considered free, our algorithm will cost, on average, about 55% to 80% less than binary method, and about 42% to 74% less than φ-ary method. For some elliptic curves, our algorithm is also taster than Mǖller's algorithm. In addition, an effective algorithm is provided for finding such integer s.
基金the Scientific Research Fund of Beijing Normal University(Grant No.28704-111032105)the Start-up Research Fund from BNU-HKBU United International College(Grant No.R72021112)+2 种基金The research of Guanghui Hu was partially supported by the FDCT of the Macao S.A.R.(0082/2020/A2)the National Natural Science Foundation of China(Grant Nos.11922120,11871489)the Multi-Year Research Grant(2019-00154-FST)of University of Macao,and a Grant from Department of Science and Technology of Guangdong Province(2020B1212030001).
文摘In Li and Ren(Int.J.Numer.Methods Fluids 70:742–763,2012),a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain,in which the high-order numerical accuracy and the oscillations-free property can be achieved.In this paper,the method is extended to solve steady state problems imposed in a curved physical domain.The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations,and a geometrical multigrid method to solve the derived linear system.To achieve high-order non-oscillatory numerical solutions,the classical k-exact reconstruction with k=3 and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables.The non-uniform rational B-splines(NURBS)curve is used to provide an exact or a high-order representation of the curved wall boundary.Furthermore,an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state.A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.
文摘In the present work it is shown that the generalized Van-der-Waals-Berthelot equation describes the evaporation curves (saturation curves) for alkali metals with good accuracy. This result is obtained on the basis of the calculations performed by the author for thermodynamic parameters of the saturation curves described by the generalized Van-der-Waals-Berthelot equation.
基金Project supported by the National Natural Science Foundation of China(Grant No.51025622)
文摘To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.
文摘The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calculated stress-strain curve with the measured one, it can be seen that they fit each other very well. Thus, the FE model built in this work is effective. According to the above mentioned model, the distributions of stress and strain in the α and β phases were simulated. The results show that the stress gradients exist in both α and β phases, and the distributions of stress are inhomogeneous. The stress inside the phase is generally higher than that near the interface. Meanwhile, the stress in the α phase is lower than that in the β phase, whereas the strain in the α phase is higher than that in the β phase.
基金Supported by the Fund of Hunan Provincial Construction Department(No.06-468-8)
文摘The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.
基金Funded by Regulation RevisingItemof China Associationfor En-gineering Construction Standardization (CECS 15 :2000)
文摘A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction.