期刊文献+
共找到371篇文章
< 1 2 19 >
每页显示 20 50 100
Genome wide investigation of Hsf gene family in Phoebe bournei:identification,evolution,and expression after abiotic stresses 被引量:1
1
作者 Wenhai Liao Xinghao Tang +6 位作者 Jingshu Li Qiumian Zheng Ting Wang Shengze Cheng Shiping Chen Shijiang Cao Guangqiu Cao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期201-215,共15页
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he... Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species. 展开更多
关键词 Phoebe bournei Hsf gene family Evolutionary analysis Expression mechanism Abiotic stresses
下载PDF
Functional prediction of tomato PLATZ family members and functional verification of Sl PLATZ17
2
作者 Min Xu Zhao Gao +8 位作者 Dalong Li Chen Zhang Yuqi Zhang Qian He Yingbin Qi He Zhang Jingbin Jiang Xiangyang Xu Tingting Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期141-154,共14页
PLATZ is a novel zinc finger DNA-binding protein that plays an important role in regulating plant growth and development and resisting abiotic stress.However,there has been very little research on the function of this... PLATZ is a novel zinc finger DNA-binding protein that plays an important role in regulating plant growth and development and resisting abiotic stress.However,there has been very little research on the function of this family gene in tomatoes,which limits its application in germplasm resource improvement.Therefore,the PLATZ gene family was identified and analyzed in tomato,and its roles were predicted and verified to provide a basis for in-depth research on SlPLATZ gene function.In this study,the PLATZ family members of tomato were identified in the whole genome,and 19 SlPLATZ genes were obtained.Functional prediction was conducted based on gene and promoter structure analysis and RNA-seq-based expression pattern analysis.SlPLATZ genes that responded significantly under different abiotic stresses or were significantly differentially expressed among multiple tissues were screened as functional gene resources.SlPLATZ17 was selected for functional verification by experiment-based analysis.The results showed that the downregulation of SlPLATZ17 gene expression reduced the drought and salt tolerance of tomato plants.Tomato plants overexpressing SlPLATZ17 had larger flower sizes and long,thin petals,adjacent petals were not connected at the base,and the stamen circumference was smaller.This study contributes to understanding the functions of the SlPLATZ family in tomato and provides a reference for functional gene screening. 展开更多
关键词 TOMATO PLATZ family abiotic stresses plant development
下载PDF
The effect of abiotic stresses on plant C:N:P homeostasis and their mitigation by silicon
3
作者 Milton Garcia Costa Renato de Mello Prado +1 位作者 Luiz Fabiano Palaretti Jonas Pereira de Souza Júnior 《The Crop Journal》 SCIE CSCD 2024年第2期340-353,共14页
In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial e... In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources(water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation. 展开更多
关键词 Nutritional stoichiometry Elemental stoichiometry Beneficial element Environmental stresses Nutritional efficiency Carbon use efficiency Agricultural sustainability
下载PDF
Boulder-induced form roughness and skin shear stresses in a gravel-bed stream
4
作者 DAS Ratul DATTA Akash 《Journal of Mountain Science》 SCIE CSCD 2024年第1期346-360,共15页
Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spac... Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface. 展开更多
关键词 Array of boulders Near wake flow zones Velocity distributions Skin roughness Form induced shear stresses
下载PDF
Effect of degree of saturation on stresses and pore water pressure in the subgrade layer caused by railway track loading
5
作者 Mohammed Y.Fattah Qutaiba G.Majeed Hassan H.Joni 《Railway Sciences》 2024年第4期413-436,共24页
Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of ... Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of this study can be identified by studying the effect of subgrade layer degree of saturation variation,load amplitude and load frequency on the transmitted stresses through the ballast layer to the subgrade layer and the stress distribution inside it and investigating the excess pore water pressure development in the clay layer in the case of a fully saturated subgrade layer and the change in matric suction in the case of an unsaturated subgrade layer.Design/methodology/approach-Thirty-six laboratory experiments were conducted using approximately half-scale replicas of real railways,with an iron box measuring 1.5×1.031.0 m.Inside the box,a 0.5 m thick layer of clay soil representing the base layer was built.Above it is a 0.2 m thick ballast layer made of crushed stone,and on top of that is a 0.8 m long rail line supported by three 0.9 m(0.1×0.1 m)slipper beams.The subgrade layer has been built at the following various saturation levels:100,80,70 and 60%.Experiments were conducted with various frequencies of 1,2 and 4 Hz with load amplitudes of 15,25 and 35 kN.Findings-The results of the study demonstrated that as the subgrade degree of saturation decreased from 100 to 60%,the ratio of stress in the lateral direction to stress in the vertical direction generated in the middle of the subgrade layer decreased as well.On average,this ratio changed from approximately 0.75 to approximately 0.65.Originality/value-The study discovered that as the test proceeded and the number of cycles increased,the value of negative water pressure(matric suction)in the case of unsaturated subgrade soils declined.The frequency of loads had no bearing on the ratio of decline in matric suction values,which was greater under a larger load amplitude than a lower one.As the test progressed(as the number of cycles increased),the matric suction dropped.For larger load amplitudes,there is a greater shift in matric suction.The change in matric suction is greater at higher saturation levels than it is at lower saturation levels.Furthermore,it is seen that the load frequency value has no bearing on how the matric suction changes.For all load frequencies and subgrade layer saturation levels,the track panel settlement rises with the load amplitude.Higher load frequency and saturation levels have a greater impact. 展开更多
关键词 Subgrade clay UNSATURATED TRACK Matric suction Stresses
下载PDF
An Experimental Artificial Neural Network Model:Investigating and Predicting Effects of Quenching Process on Residual Stresses of AISI 1035 Steel Alloy
6
作者 Salman Khayoon Aldriasawi Nihayat Hussein Ameen +3 位作者 Kareem Idan Fadheel Ashham Muhammed Anead Hakeem Emad Mhabes Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期78-92,共15页
The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ... The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035. 展开更多
关键词 QUENCHING nanofluids residual stresses steel alloy artificial neural network MANOVA
下载PDF
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:2
7
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 RC slabs Impact loading Eccentric impacts Concrete models Finite element analysis Damage profiles Stresses Peak acceleration Failure modes Damage dissipation energy CRACKING Drop-weight locations
下载PDF
A Methodology to Reduce Thermal Gradients Due to the Exothermic Reactions in Resin Transfer Molding Applications 被引量:1
8
作者 Aouatif Saad Mohammed EL Ganaoui 《Fluid Dynamics & Materials Processing》 EI 2023年第1期95-103,共9页
Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can c... Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can cause thermal gradients in the composite,potentially leading to undesired residual stresses which can cause shrinkage and warpage.In the present numerical study of these processes,a one-dimensional finite difference method is used to predict the temperature evolution and the degree of cure in the course of the resin polymerization;the effect of some parameters on the thermal gradient is then analyzed,namely:the fiber nature,the use of multiple layers of reinforcement with different thermal properties and also the temperature cycle variation.The validity of this numerical model is tested by comparison with experimental and numerical results in the existing literature. 展开更多
关键词 CURE RTM finite difference method thermal gradients residual stresses
下载PDF
Mechanisms of autophagy function and regulation in plant growth,development,and response to abiotic stress
9
作者 Yongbo Li Xiangmin Xu +5 位作者 Guang Qi Dezhou Cui Chen Huang Xinxia Sui Genying Li Qingqi Fan 《The Crop Journal》 SCIE CSCD 2023年第6期1611-1625,共15页
Autophagy is an evolutionarily conserved degradation pathway of lysosomes(in mammals)and vacuoles(in yeasts and plants)from lower yeasts to higher mammals.It wraps unwanted organelles and damaged proteins in a double-... Autophagy is an evolutionarily conserved degradation pathway of lysosomes(in mammals)and vacuoles(in yeasts and plants)from lower yeasts to higher mammals.It wraps unwanted organelles and damaged proteins in a double-membrane structure to transport them to vacuoles for degradation and recycling.In plants,autophagy functions in adaptation to the environment and maintenance of growth and development.This review systematically describes the autophagy process,biological functions,and regulatory mechanisms occurring during plant growth and development and in response to abiotic stresses.It provides a basis for further theoretical research and guidance of agricultural production. 展开更多
关键词 AUTOPHAGY FUNCTION Mechanism DEVELOPMENT Abiotic stresses
下载PDF
THM coupled analysis of cement sheath integrity considering well
10
作者 Xiao-Rong Li Chen-Wang Gu +1 位作者 Ze-Chen Ding Yong-Cun Feng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期447-459,共13页
he cement sheath is the heart of any oil or gas well for providing zonal isolation and well integrity during the life of a well.Loads induced by well construction operations and borehole pressure and temperature chang... he cement sheath is the heart of any oil or gas well for providing zonal isolation and well integrity during the life of a well.Loads induced by well construction operations and borehole pressure and temperature changes may lead to the ultimate failure of cement sheath.This paper quantifies the potential of cement failure under mechanically and thermally induced stress during the life-of-well using a coupled thermalehydrologicalemechanical(THM)modeling approach.A staged finite-element procedure is presented considering sequential stress and displacement development during each stage of the well life,including drilling,casing,cementing,completion,production,and injection.The staged model quantifies the stress states and state variables,e.g.,plastic strain,damage,and debonding at cement/rock or cement/casing interface,in each well stage from simultaneous action of in-situ stress,pore pressure,temperature,casing pressure,and cement hardening/shrinkage.Thus,it eliminates the need to guess the initial stress and strain state before modeling a specific stage.Moreover,coupled THM capabilities of the model ensure the full consideration of the interaction between these influential factors. 展开更多
关键词 Cement sheath integrity Thermal-hydrological-mechanical Whole life cycle Cement sheath shrinkage Initial stresses
下载PDF
The soybean GmPUB21-interacting protein GmDi19-5 responds to drought and salinity stresses via an ABA-dependent pathway
11
作者 Yunhua Yang Rui Ren +8 位作者 Adhimoolam Karthikeyan Jinlong Yin Tongtong Jin Fei Fang Han Cai Mengzhuo Liu Dagang Wang Haijian Zhi Kai Li 《The Crop Journal》 SCIE CSCD 2023年第4期1152-1162,共11页
Drought-induced protein 19(Di19) is a Cys2/His2 zinc-finger protein that functions in plant growth and development and in tolerance to abiotic stresses.Gm PUB21,an E3 ubiquitin ligase,negatively regulates drought and ... Drought-induced protein 19(Di19) is a Cys2/His2 zinc-finger protein that functions in plant growth and development and in tolerance to abiotic stresses.Gm PUB21,an E3 ubiquitin ligase,negatively regulates drought and salinity response in soybean.We identified potential interaction target proteins of Gm PUB21by yeast two-hybrid c DNA library screening,Gm Di19-5 as a candidate.Bimolecular fluorescence complementation and glutathionine-S-transferase pull-down assays confirmed the interaction between Gm Di19-5 and Gm PUB21.Gm Di19-5 was induced by Na Cl,drought,and abscisic acid(ABA) treatments.Gm Di19-5 was expressed in the cytoplasm and nucleus.Gm Di19-5 overexpression conferred hypersensitivity to drought and high salinity,whereas Gm Di19-5 silencing increased drought and salinity tolerance.Transcripts of ABA-and stress response-associated genes including Gm RAB18 and Gm DREB2A were downregulated in Gm Di19-5-overexpressing plants under drought and salinity stresses.ABA decreased the protein level of Gm Di19-5 in vivo,whereas Gm PUB21 increased the decrease of Gm Di19-5 after exogenous ABA application.The accumulation of Gm PUB21 was also inhibited by Gm Di19-5.We conclude that Gm PUB21 and Gm Di19-5 collaborate to regulate drought and salinity tolerance via an ABA-dependent pathway. 展开更多
关键词 SOYBEAN Drought and salinity stresses GmDi19-5 GmPUB21 ABA-dependent pathway
下载PDF
Undrained semi-analytical solution for cylindrical cavity expansion in anisotropic soils under biaxial stress conditions
12
作者 Lele Hou Xiaolin Weng +1 位作者 Jibo Hu Rongming Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1284-1297,共14页
This paper presents an undrained semi-analytical elastoplastic solution for cylindrical cavity expansion in anisotropic soil under the biaxial stress conditions.The advanced simplified SANICLAY model is used to simula... This paper presents an undrained semi-analytical elastoplastic solution for cylindrical cavity expansion in anisotropic soil under the biaxial stress conditions.The advanced simplified SANICLAY model is used to simulate the elastoplastic behavior of soil.The cavity expansion is treated as an initial value problem and solved as a system of eight first-order ordinary differential equations including four stress components and four anisotropic parameters.The results are validated by comparing the new solutions with existing ones.The distributions of stress components and anisotropic parameters around the cavity wall,the expansion process,the stress yield trajectory of a soil element and the shape and size of elastoplastic boundary are further investigated to explore the cavity expansion response of soils under biaxial in situ stresses.The results of extensive parameters analysis demonstrate that the circumferential position of the soil element and the anisotropy of the soils have noticeable impacts on the expansion response under biaxial in situ stresses.Since the present solution not only considers the anisotropy and anisotropy evolution of natural soil,but also eliminates the conventional assumption of uniform radial pressure,the solution is better than other theoretical solutions to explain the pressure test and pile installation effect of shallow saturated soil. 展开更多
关键词 Cylindrical cavity expansion Anisotropic soil Undrained solution Biaxial in situ stresses
下载PDF
Optimization of Rolling Parameters for Enhancing Surface Integrity of Aluminum Alloy
13
作者 Emad Ali Hussein Jabbar Gattmah +1 位作者 Ayad Naseef Jaseem Suha K Shihab 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第6期70-82,共13页
In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubric... In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubrication type.The experimental procedure of the rolling process is performed using the design of the experiment based on the Taguchi technique(L27),then surface roughness,surface hardness,and surface residual stresses are measured.The results showed that the lubrication density has a significant impact on the surface roughness which depends on the lubrication properties(mineral oil type,natural fat,and kinematic viscosity)while surface hardness and surface residual stresses were strongly affected by thickness reduction.On the other side,the augment in forming temperature can decrease the quality of the final surface finish and the surface hardness but reduce the induced residual stresses.The best surface finish is obtained based on the optimum condition of the rolling factors are(R%_(3),T_(1),andρ_(3))while the optimum condition of rolling parameters that generate higher hardness and compressive residual stresses are(R%_(3)T_(1)ρ_(1)). 展开更多
关键词 Rolling operation Taguchi technique Al2024 Surface roughness Surface hardness Surface residual stresses
下载PDF
Simulation of the Behaviour Laws in the Thermal Affected Zones of the 13Cr-4Ni Martensitic Stainless Steel
14
作者 Marcel Julmard Ongoumaka Yandza Harmel Obami-Ondon Christian Tathy 《Modern Mechanical Engineering》 2023年第4期63-76,共14页
During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficu... During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficult for many professionals operating in the area. In the goal to predict these variations, one has established the behaviour laws which will be applied to evaluate residual stresses and strains. This research is focused on the study of the Thermal Affected Zone (TAZ) during the welding of the 13Cr-4Ni martensitic stainless steel. The TAZ does not know any change of state (solid/liquid). It only knows the metallurgical phase change (austenite/martensite). There are three types of behaviour laws in this study: thermal, mechanical and metallurgical behaviour laws. The thermal behaviour law serves to evaluate the temperature field which induces the mechanical strains. The mechanical behaviour law serves to evaluate spherical stress (pressure) and deviatoric stress which compose the residual stress. It also helps to measure the total strain. The metallurgical behaviour law serves for the evaluation of the metallurgical phase proportions. To validate the modelling developed in this study, one has made the simulations to compare the results obtained with the analytical and experimental data. 展开更多
关键词 Behaviour Laws Martensitic Stainless Steel Residual Stresses Strain Numerical Simulation
下载PDF
Source Mechanisms of Recent Earthquakes in Southern Saudi Arabia: Detecting of New Seismic Sources
15
作者 Ahmed Hosny Abdullah Mousa +2 位作者 Khaled Yousef Lotfy Samy Hamada Sadallah 《International Journal of Geosciences》 2023年第10期913-934,共22页
Recently in 2020, in southern Saudi Arabia three felt earthquakes occurred in Asir region, in the Khamis Mushait, Ahad Rafidah, and AL-Shuqiq area, of magnitude 3.45, 3.1, and 3.5, respectively. The most interesting e... Recently in 2020, in southern Saudi Arabia three felt earthquakes occurred in Asir region, in the Khamis Mushait, Ahad Rafidah, and AL-Shuqiq area, of magnitude 3.45, 3.1, and 3.5, respectively. The most interesting event was the earthquake that occurred in Khamis Mushait area, along a lake formed behind the Tadhah Dam (~7 km), fearing any damage to the dam’s body and the consequent destruction. Moment tensors for each event were computed for determining fault plane solutions, seismic moment, moment magnitude (Mw) and the CLVD ratio. In addition, the frequency contents in the waveforms of each event were identified. The obtained focal mechanisms represent different styles of faulting, normal movement with strike slip and strike slip with reverse. These tectonic movements on faults parallel to the Red Sea refer to the tensional forces due to the Red Sea rift system. These events occurred due to a natural tectonic movement, with considering the Khamis Mushait event as an induced event because of the lake behind the Dam. Many previous seismic hazard assessment studies have been conducted in southern Saudi Arabia without considering these recent seismic sources. Thus, our study provides new information related to detecting of new active seismic sources, which contributes to updating studies of seismic risk assessment in this region. In addition, our study pushes us to establish other additional seismic stations around these new seismic sources. This in turn will play a pivotal role in controlling seismic sources and then reassessing the seismic hazard in southern Saudi Arabia. 展开更多
关键词 New Seismic Sources Local and Regional Stresses Updating Seismic Hazard
下载PDF
冷弯方钢管焊接纵向残余应力分析 被引量:2
16
作者 侯刚 童乐为 《结构工程师》 2010年第5期37-43,共7页
为了解冷弯方管的焊接纵向残余应力分布,应用较贴近实际情况的双椭球热源模型,对冷弯方钢管的焊接过程进行数值模拟,通过与实测数据进行对比来验证数值模拟的可行性,并对比不同边长、壁厚,以及热输入条件下的焊接纵向残余应力分布,得出... 为了解冷弯方管的焊接纵向残余应力分布,应用较贴近实际情况的双椭球热源模型,对冷弯方钢管的焊接过程进行数值模拟,通过与实测数据进行对比来验证数值模拟的可行性,并对比不同边长、壁厚,以及热输入条件下的焊接纵向残余应力分布,得出:当其他条件不变时,不同边长方管的焊接纵向残余应力,在焊缝及邻近焊缝部位的分布差距不大,而在距焊缝较远的部位,大边长方管的焊接纵向残余应力要明显大于小边长方管;较薄管壁与较高热能输入的方管更易被焊透,纵向残余应力值更高,分布也更均匀。 展开更多
关键词 冷弯方钢管 钢管焊接 残余应力分析 HOLLOW SECTIONS Residual Stresses 纵向残余应力 长方管 应力分布 数值模拟 边长 双椭球热源模型 焊缝 贴近实际 输入条件 实测数据 焊接过程 应力值 验证 热能 管壁
下载PDF
Effects of Cadmium Stress on Key Enzymes Involved in Nitrogen Metabolism and Nitrogen,Phosphorus, Potassium Accumulation of Different Varieties of Rice
17
作者 黄维 彭建伟 +2 位作者 龚蓉 庹海波 范艳咪 《Agricultural Science & Technology》 CAS 2015年第6期1204-1208,共5页
In this study, the pot experiment was used to explore the differences of activity of key enzymes involved in N metabolism and NPK accumulation under Cd stress during the til iering stage of differen varieties of rice.... In this study, the pot experiment was used to explore the differences of activity of key enzymes involved in N metabolism and NPK accumulation under Cd stress during the til iering stage of differen varieties of rice. The results showed that:Cd stress could increase the NPK concentration of different rice type in the til ering stage, while Shen-Liangyou 5867,Yongyou 5550 and Wu-Yunjing 27 showed the highest amplification respectively. Morever, Cd stress can also contribute to the ac-tivity of NR,GS,GOGAT increasing.A s for NR,the Cd stress significantly contribute to NR activity increasing of Huang-Huazhan and Yongyou 538 but is not significant for Wu-Yunjing 27, Shen-Liangyou 5867 and Yongyou 5550, however, the difference among them is not obvious.However, for the activity of GS , Cd stress promote the GS activity. Huang-Huazhan and Wu-Yunjing 27 with low activity in Cd normal level are the most sensitive. Meanwhile the difference between two treatment is the most significant. To the contrary, restrain the GS activity of Shen-Liangyou 5867, Yongy-ou 5550 and the difference is not significant. And under Cd stress, either difference reached significant in GS activity. Cd stress also improve the activity of GOGAT, Wu-Yunjing 27 showed the highest inprovement which showed the lowest GOGAT activity under Cd normal level. Cd stress on rice growth and development of ad-verse, make its lower seed setting rate, 1 000 grain weight decreased, resulting in different degrees of reduction of output of rice. 展开更多
关键词 RICE Cadmium stresses Til ering stage Nitrogen metabolism
下载PDF
Velocity of a Liquid Drop with a Sorption-Controlled Surfactant
18
作者 陈晋南 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期116+107-116,共11页
The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions.... The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions. Most prior research uses a linear adsorption model which cannot capture these effects, The Maragoni migration of a liquid drop settling through a surfactant solution is examined by using Langmuir framework. The solution concentration Ceq is assumed large enough for the surfactant mass transfer to be adsorption-controlled. Langmuir model generates non-linear Marangoni stresses which diverge in the limit of approaching ∝, strongly retarding U'. 展开更多
关键词 Marangoni stresses non-linear adsorption Langmuir isotherm phpsco-chemical hydrodynamics mass transfer dynamic surface tension
下载PDF
Finite element analysis of stress distribution and burst failure of SiC_f/Ti-6Al-4V composite ring 被引量:2
19
作者 张红园 杨延清 罗贤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期261-270,共10页
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo... A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature. 展开更多
关键词 titanium-matrix composites RING stress distribution burst failure finite element analysis thermal residual stresses
下载PDF
Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants 被引量:25
20
作者 Shabir H.Wani Vinay Kumar +1 位作者 Varsha Shriram Saroj Kumar Sah 《The Crop Journal》 SCIE CAS CSCD 2016年第3期162-176,共15页
Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands o... Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance.However,the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities.Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance.Recent investigations have shown that phytohormones,including the classical auxins,cytokinins,ethylene,and gibberellins,and newer members including brassinosteroids,jasmonates,and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants.In this review,we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance,besides their engineering for conferring abiotic stress tolerance in transgenic crops.We also describe recent successes in identifying the roles of phytohormones under stressful conditions.We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants. 展开更多
关键词 PHYTOHORMONES ABIOTIC STRESS METABOLIC engineering PLANT stresses
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部