An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress dif...An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress difference was developed as an indicator of the degree of springback instead of implicit springback analysis.Explicit finite element method(FEM)was used to analyze the forming process and to provide the stress distribution for calculating the amount of the stress indicator.In addition,multi-island genetic algorithm(MGA)was employed to seek the optimal loading condition.A case study was performed to demonstrate the potential of the suggested method.The results show that the optimization design of process parameters effectively reduces the amount of springback and improves the part shape accuracy.It provides a guideline for controlling springback in stretch forming of aircraft skin.展开更多
A process design approach for multi-stage stretch forming was proposed by combining the strain distribution method and finite element method(FEM)to determine the minimum stage number and deformation amount of each sta...A process design approach for multi-stage stretch forming was proposed by combining the strain distribution method and finite element method(FEM)to determine the minimum stage number and deformation amount of each stage.The strain distribution method was used to calculate the deformation amount of each stage and evaluate the formability through a safety criterion.FE simulation was taken as an analysis tool to reveal the deformation behaviour,to predict the strain contour and to determine the process parameters at each stage.To evaluate the effect of heat treatment after pre-strain on occurrence of deformation defects during the subsequent deformation,a multi-stage uniaxial tension test for 2B06 aluminium alloy sheet was carried out.A case study demonstrates that the approach has high reliability and good practicability.展开更多
The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input pa...The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input parameters for simulation. Finite element analysis of the forming process was carried out using Abaqus/Explicit by considering von Mises and Hill-1948 yield criteria. Simulation results including punch force and strain distribution were compared and validated with the experimental results. The results reveal that using anisotropic yield criteria for simulation has a better match in both cases with the experiments.展开更多
Characterisation experiments have been conducted on a woven self-reinforced polypropylene composite (SRPP) including uniaxial and bias extension tests. Outcomes of these experiments were employed to develop a non-line...Characterisation experiments have been conducted on a woven self-reinforced polypropylene composite (SRPP) including uniaxial and bias extension tests. Outcomes of these experiments were employed to develop a non-linear orthotropic material model within an incremental deformation framework. The material model of the woven composite was implemented into a finite element simulation to predict stretch forming behaviour of SRPP specimens. The predicted strain paths at the pole of specimens were verified against experimental outcomes. It was shown that specimens possessing different aspect ratios deform under a wide range of deformation modes from uniaxial extension to biaxial stretch modes. Finally, the effect of different forming parameters on the strain path evolution of the woven composite was elucidated through numerical simulations. It was shown that the aspect ratio of the samples plays an important role in forming behaviour of woven composites. Development of a reliable and accurate numerical model for predicting forming behaviour of woven composites and understanding their main forming mechanisms promote and encourage the extensive application of these materials systems in a wide range of mass producing industries. Adopting woven composites in manufacturing industrial components facilitates addressing environmental concerns such as recyclability and sustainability issues.展开更多
To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11...To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.展开更多
基金Project(50905008)supported by the National Natural Science Foundation of ChinaProject(2007AA041905)supported by the National High-tech Research and Development Program of ChinaProject(YWF-10-01-B08)supported by the Fundamental Research Funds for the Central Universities,China
文摘An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress difference was developed as an indicator of the degree of springback instead of implicit springback analysis.Explicit finite element method(FEM)was used to analyze the forming process and to provide the stress distribution for calculating the amount of the stress indicator.In addition,multi-island genetic algorithm(MGA)was employed to seek the optimal loading condition.A case study was performed to demonstrate the potential of the suggested method.The results show that the optimization design of process parameters effectively reduces the amount of springback and improves the part shape accuracy.It provides a guideline for controlling springback in stretch forming of aircraft skin.
基金Project(2006AA04Z143) supported by the National High-tech Research and Development Program of ChinaProject(2006BAF04B00) supported by the National Key Technologies R&D Program of ChinaProject(2007ZE51055) supported by the Aviation Science Foundation of China
文摘A process design approach for multi-stage stretch forming was proposed by combining the strain distribution method and finite element method(FEM)to determine the minimum stage number and deformation amount of each stage.The strain distribution method was used to calculate the deformation amount of each stage and evaluate the formability through a safety criterion.FE simulation was taken as an analysis tool to reveal the deformation behaviour,to predict the strain contour and to determine the process parameters at each stage.To evaluate the effect of heat treatment after pre-strain on occurrence of deformation defects during the subsequent deformation,a multi-stage uniaxial tension test for 2B06 aluminium alloy sheet was carried out.A case study demonstrates that the approach has high reliability and good practicability.
文摘The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input parameters for simulation. Finite element analysis of the forming process was carried out using Abaqus/Explicit by considering von Mises and Hill-1948 yield criteria. Simulation results including punch force and strain distribution were compared and validated with the experimental results. The results reveal that using anisotropic yield criteria for simulation has a better match in both cases with the experiments.
文摘Characterisation experiments have been conducted on a woven self-reinforced polypropylene composite (SRPP) including uniaxial and bias extension tests. Outcomes of these experiments were employed to develop a non-linear orthotropic material model within an incremental deformation framework. The material model of the woven composite was implemented into a finite element simulation to predict stretch forming behaviour of SRPP specimens. The predicted strain paths at the pole of specimens were verified against experimental outcomes. It was shown that specimens possessing different aspect ratios deform under a wide range of deformation modes from uniaxial extension to biaxial stretch modes. Finally, the effect of different forming parameters on the strain path evolution of the woven composite was elucidated through numerical simulations. It was shown that the aspect ratio of the samples plays an important role in forming behaviour of woven composites. Development of a reliable and accurate numerical model for predicting forming behaviour of woven composites and understanding their main forming mechanisms promote and encourage the extensive application of these materials systems in a wide range of mass producing industries. Adopting woven composites in manufacturing industrial components facilitates addressing environmental concerns such as recyclability and sustainability issues.
基金the Central Government Guided Local Science and Technology Development Projects(YDZJSX2021A010)China Postdoctoral Science Foundation(No.2022M710541)+5 种基金the National Natural Science Foundation of China(51704209,52274397,U1810208)the Projects of International Cooperation in Shanxi(201803D421086)Shanxi Province Patent Promotion Implementation Fund(20200718)Research Project Supported by Shanxi Scholarship Council of China(2022-038)Science and Technology Major Project of Shanxi Province(20191102008,20191102007,20181101008)Taishan Scholars Project Special Fund(2021)。
文摘To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.