期刊文献+
共找到8,401篇文章
< 1 2 250 >
每页显示 20 50 100
Static Stretching Combined with Conscious Slower Breathing May Increase Parasympathetic Activity and Reduce Stress in Adult Women
1
作者 Mami Sakurai Yasushi Ikarashi +3 位作者 Masahiro Tabuchi Ailing Hu Takuji Yamaguchi Hiroyuki Kobayashi 《Health》 2024年第3期242-256,共15页
Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields t... Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields to not only increase muscle flexibility but also reduce stress. Additionally, conscious slower breathing (CSB) predominates parasympathetic activity, causing a relaxing effect. These results indicate that combining SST and CSB may be more useful in reducing stress. However, to the best of our knowledge, the effect of this combination remains unclear. Objective: This study aimed to elucidate the effects of the combination of SST and CSB on autonomic activity and stress in adult women. Methods: Eleven healthy Japanese adult female participants performed SST with nonconscious natural breathing for 20 min. The same participants performed SST in combination with CSB (2 s inspiratory and 4 s expiratory) for 20 min on another day. Salivary cortisol and chromogranin A levels were measured before and after stretching as stress markers of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. The coefficient of variation of the R-R interval (CVR-R) and high-frequency component (HF), which reflect parasympathetic nerve activity, and heart rate and low-frequency component (LF)/HF ratio, which reflect sympathetic nerve activity, were measured before, during, and after stretching. Results: SST decreased cortisol levels but with no significant changes in chromogranin A, heart rate, CVR-R, HF, or LF/HF ratio. The combination of SST and CSB increased CVR-R and HF levels in addition to decreasing cortisol levels but with no significant changes in chromogranin A, heart rate, or LF/HF levels. Conclusion: These results indicate that the combination of SST and CSB may increase parasympathetic activity and reduce stress. However, future randomized controlled trials with larger sample sizes should support this conclusion. 展开更多
关键词 Static stretching Conscious Slower Breathing Autonomic Activity Heart Rate Variability stress
下载PDF
Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect 被引量:2
2
作者 Xiaokang DU Yuanzhao CHEN +3 位作者 Jing ZHANG Xian GUO Liang LI Dingguo ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期125-140,共16页
Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for ... Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for axial and transverse deformations.The discretized dynamic governing equations are obtained by using the finite element method and Lagrange’s equations of the second kind.Time responses are conducted to compare the proposed model with other previous models.The stretching deformation due to rotating motion is observed and calculated by special formulations under dynamic equilibrium.The stretching deformation and the change of the associated equilibrium position are taken into account to analyze the free vibration and frequency response of the rotating beams.Analytical and numerical comparisons show that the proposed model can provide reliable results,while the previous models may lead to imprecise results,especially in high-speed conditions. 展开更多
关键词 rotating beam finite element method stiffening effect stretching deformation dynamic equilibrium
下载PDF
Borehole deformation based in situ stress estimation using televiewer data
3
作者 Hamid Roshan Danqi Li +1 位作者 Ismet Canbulat Klaus Regenauer-Lieb 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2475-2481,共7页
The knowledge of in situ stress is critical in safe and optimised extraction of minerals and energy resources.In situ stresses are either measured directly(e.g.overcoring)or estimated indirectly(e.g.borehole breakouts... The knowledge of in situ stress is critical in safe and optimised extraction of minerals and energy resources.In situ stresses are either measured directly(e.g.overcoring)or estimated indirectly(e.g.borehole breakouts).Borehole breakout analysis for in situ stress estimation is considered a relatively simple and cost-efficient technique.This technique,however,poses certain limitations such as complexities with progressive formation of breakouts and it requires inputs such as rock failure parameters that are not often available.As a result,significant effort has been made to develop new indirect methods for in situ stress estimation.Borehole deformation analysis using four-arm caliper has been recently proposed for in situ stress estimation and has shown promising results.In this study,we demonstrate a new methodology that analyses the borehole televiewer data with the technique of borehole deformation analysis to estimate the in situ stresses through a field case study.The advantages and challenges of using borehole televiewer data for stress estimation based on borehole deformation analysis are discussed and the best practice to obtain the reliable results is explained.The limitations of using fourarm caliper and borehole deformation analysis for in situ stress estimation are also discussed and it is shown how televiewer data can overcome such limitations.Finally,the in situ stress results obtained from televiewer data and borehole deformation analysis are compared with independent in situ stress measurements to show the robustness and reliability of the proposed methodology. 展开更多
关键词 In situ stress Borehole deformation Televiewer Elastic properties Downhole logging
下载PDF
A rigid true triaxial apparatus for analyses of deformation and failure features of deep weak rock under excavation stress paths
4
作者 Xia-Ting Feng Xiaojun Yu +2 位作者 Yangyi Zhou Chengxiang Yang Feiyan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1065-1075,共11页
The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thu... The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thus,the large deformation mechanism of deep weak rocks still remains unclear.For this,a true triaxial apparatus(TTA)to investigate the mechanical responses of deep weak rock under excavation stress paths in field and reveal the squeezing mechanism of deep tunnels is assembled and developed at Northeastern University,China.The apparatus can perform instantaneous unloading in s3 direction based on electromagnetism technology.In addition,uniform loading and deformation measurements can be carried out based on the proposed linked interlocking clamp and antifriction device,even if the sample has a strong dilatation deformation performance.Next,a bore trepanning is designed to capture noiseless acoustic emission(AE)signals for deep weak rock at a low threshold.Finally,two tests were are conducted using this instrument to preliminarily understand the failure and deformation features of deep weak rock based on fractured marble.The results show that the complete stressestrain curves of fractured marble have the characteristics of low strengths and large deformations,and the larger deformation and the more serious failure occur when the fractured marble enters the post-peak state after excavation.The results show that the developed apparatus is likely to be applicable for deep weak rock engineering. 展开更多
关键词 True triaxial apparatus(TTA) Deep weak rock Large deformation Excavation stress path Instantaneous unloading
下载PDF
Assessment of cyclic deformation and critical stress amplitude of jointed rocks via cyclic triaxial testing
5
作者 Waranga Habaraduwa Peellage Behzad Fatahi Haleh Rasekh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1370-1390,共21页
Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric... Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased. 展开更多
关键词 Cyclic triaxial test Jointed rock Joint surface Confining pressure Cyclic deviatoric stress amplitude FAILURE Residual deformation Dissipated energy
下载PDF
Study on Asymmetric Deformation Law and Surrounding Rock Control Technology of High Stress Soft Rock Crossing Roadway
6
作者 Linhao Zhang 《World Journal of Engineering and Technology》 2023年第2期353-369,共17页
In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang C... In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang Coal Mine as the engineering background, the causes of asymmetric deformation and failure of soft rock crossing roadway in deep mines were summarized and analyzed by means of field investigation, theoretical analysis and numerical simulation, and the asymmetric high-efficiency support technology with large row spacing was studied. The results show that the lithology of roadway strata is the main cause of asymmetric deformation and failure of roadway. The shape change of roadway is not the main influencing factor of asymmetric deformation of roadway, but for the control of roadway surrounding rock, the straight wall semi-circular arch roadway is better than the rectangular roadway. The field industrial test shows that after adopting the new support design scheme, the displacement of the roof and floor of the roadway is reduced by 86.39% compared with the original support design scheme, and the displacement of the two sides of the roadway is reduced by 86.05% compared with the original support design scheme, which can ensure the normal and safe production of the roadway during the service period, and provide reference for the support design of other similar geological conditions. 展开更多
关键词 Deep High stress Soft Rock Penetration Asymmetric deformation Support FLAC3D
下载PDF
Viscoplastic solutions of time-dependent deformation for tunnels in swelling rock mass considering stress release
7
作者 Gengyun Liu Youliang Chen +1 位作者 HyonChol Rim Rafig Azzam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2053-2071,共19页
Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was estab... Excavation and control of tunneling responses in swelling soft-rock tunnels of Sichuan-Tibet railway under seepage conditions were studied.For this,a fractional viscoplastic(FVP)model for swelling soft rocks was established by introducing Abel dashpot and unsteady viscosity coefficient,considering additional swelling deformation and damage of rock caused by humidity effect.In view of the FVP model,the viscoplastic deformation solutions for rock mass surrounding tunnel under seepage conditions were derived and long-term mechanical responses of swelling rocks upon tunnel excavation were analyzed.Next,a stress release coefficient considering seepage and creep was proposed,based on which control responses considering stress release and failure mechanism of stress release measures were analyzed.The results showed that:(i)The one-dimensional(1D)FVP model has a good application for swelling rock and the three-dimensional(3D)FVP model could well describe the whole creep process of rock mass despite a much higher creep attenuation rate in the first stage of creep;and(ii)An appropriate stress release and deformation of surrounding rocks could effectively reduce the supporting resistance.However,upon a large stress release,the radius of plastic region could increase significantly,and the strength of the surrounding rock mass decreases greatly.The proposed solution could provide a theoretical framework for capturing the excavation and support responses for tunneling in swelling rock mass in consideration of time effect. 展开更多
关键词 Sichuan-tibet railway Viscoplastic deformation stress release Fractional model Tunneling engineering
下载PDF
Mechanical stress and deformation analyses of pressurized cylindrical shells based on a higher-order modeling
8
作者 S.Mannani L.Collini M.Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期24-33,共10页
In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoi... In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoidal shear deformation theory.Thickness stretching formulation is accounted for more accurate analysis.The total transverse deflection is divided into bending,shear and thickness stretching parts in which the third term is responsible for change of deflection along the thickness direction.The axisymmetric formulations are derived through principle of virtual work.A parametric study is presented to investigate variation of stress and strain components along the thickness and longitudinal directions.To explore effect of thickness stretching model on the static results,a comparison between the present results with the available results of literature is presented.As an important output,effect of micro-scale parameter is studied on the static stress and strain distribution. 展开更多
关键词 Principle of virtual work Thickness-stretched and shear deformable model stress and strain analyses Cylindrical pressure vessel
下载PDF
Orthogonal basic deformation mode method for zero-energy mode suppression of hybrid stress elements
9
作者 张灿辉 王东东 李同姗 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第1期83-96,共14页
A set of basic deformation modes for hybrid stress finite elements are directly derived from the element displacement field. Subsequently, by employing the so-called united orthogonal conditions, a new orthogonalizati... A set of basic deformation modes for hybrid stress finite elements are directly derived from the element displacement field. Subsequently, by employing the so-called united orthogonal conditions, a new orthogonalization method is proposed. The result- ing orthogonal basic deformation modes exhibit simple and clear physical meanings. In addition, they do not involve any material parameters, and thus can be efficiently used to examine the element performance and serve as a unified tool to assess different hybrid elements. Thereafter, a convenient approach for the identification of spurious zero-energy modes is presented using the positive definiteness property of a flexibility matrix. More- over, based on the orthogonality relationship between the given initial stress modes and the orthogonal basic deformation modes, an alternative method of assumed stress modes to formulate a hybrid element free of spurious modes is discussed. It is found that the orthogonality of the basic deformation modes is the sufficient and necessary condition for the suppression of spurious zero-energy modes. Numerical examples of 2D 4-node quadrilateral elements and 3D 8-node hexahedral elements are illustrated in detail to demonstrate the efficiency of the proposed orthogonal basic deformation mode method. 展开更多
关键词 hybrid stress element basic deformation mode assumed stress mode modeorthogonality suppression of zero-energy deformation mode
下载PDF
Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect 被引量:5
10
作者 Maryam Lori Dehsaraji Mohammad Arefi Abbas Loghman 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期119-134,共16页
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform... Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses. 展开更多
关键词 Thickness stretching effect Shear and normal deformation theory Vibration analysis Length scale parameter Modified couple stress theory
下载PDF
Three dimension simulation analysis of the interpass stress and deformation during multipass welding 被引量:4
11
作者 张华军 张广军 +2 位作者 张秀兰 蔡春波 高洪明 《China Welding》 EI CAS 2008年第2期72-78,共7页
It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformat... It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation. 展开更多
关键词 interpass stress multipass welding three-dimensional stress field angular deformation numerical simulation
下载PDF
Numerical Si mulation of Inner Stress Fields for Stretching Block With Rectangular Section Between Flat Anvils 被引量:1
12
作者 DENG Dong-mei LIU Zhu-bai ZHOU Lai-shui 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2006年第1期75-78,共4页
The stretch of blocks with rectangular section using flat anvils was simulated by using ANSYS software. The inner stress distribution for different tool width ratio w/h and blank width ratio b/h was studied. Consequen... The stretch of blocks with rectangular section using flat anvils was simulated by using ANSYS software. The inner stress distribution for different tool width ratio w/h and blank width ratio b/h was studied. Consequent- ly, critical anvil width ratio (w/h)c and critical blank width ratio (b/h)c are obtained, which provide a sound basis for designing reasonable stretching technology. 展开更多
关键词 stretchING flat anvil anvil width ratio blank width ratio transverse stress axial stress
下载PDF
Influence of stress path change on the resistance to plastic deformation of cold rolled sheets 被引量:1
13
作者 Pavel Huml 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期521-526,共6页
Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strip... Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening. 展开更多
关键词 cold working plastic deformation strain path stress path loading mode flow stress yield stress strain hardening
下载PDF
Determination of mining-induced stresses using diametral rock core deformations
14
作者 Yizhuo Li Hani S.Mitri 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第6期13-24,共12页
Knowledge of ground stresses is crucial for ground control activities such as the design of underground openings,selec-tion of support systems,and analysis for stability.However,it is a known fact that far field stres... Knowledge of ground stresses is crucial for ground control activities such as the design of underground openings,selec-tion of support systems,and analysis for stability.However,it is a known fact that far field stresses experience changes in orientation and magnitude due to the presence of geological structures and due to the excavations created by mining activi-ties.As a result,in-situ stresses around drifts,ramps,and stopes in underground mines are quite different from far field or pre-mining stresses.The purpose of this research is to develop a simple and practical methodology for determining in-situ stresses.Stress relief occurs once the rock core is drilled off.Such relief is a function of the surrounding stress field.This study uses exploration rock cores that are drilled off for the purpose of orebody definition in the underground mine.The method measures and analyzes the diametral core deformations in laboratory.Two case studies from operating underground mines are presented for demonstration.In these case studies,rock core deformations are measured with a customized test apparatus and rock samples were prepared and tested for Young's modulus and Poisson's ratio.The differential stress,namely the difference between the local principal stresses in the plane perpendicular to the core rock axis is calculated.It is shown that this methodology is useful for determining the brittle shear ratio in the rock mass,which is of primary interest to ground control studies. 展开更多
关键词 In-situ stresses Rock core diametral deformation Strain relief Core-based stress measurement Brittle shear ratio
下载PDF
Elastoplastic 3D Deformation and Stress Analysis of Strip Rolling 被引量:5
15
作者 Liu Yuli Jin Xiaoguang Lian Jiachuang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 1998年第2期30-33,共6页
An elastoplastic method for analyzing the 3D deformation, stress and transverse distribution of tension stress during cold strip rolling is developed. The analysis is based on the elastoplastic variational principle i... An elastoplastic method for analyzing the 3D deformation, stress and transverse distribution of tension stress during cold strip rolling is developed. The analysis is based on the elastoplastic variational principle in which a kinematically admissible velocity field is constructed with the lateral flow function as an unknown function. The stress distribution and volume strain distribution are obtained by solving the simultaneous equations formed by the longitudinal differential equation of equilibrium and constitutive equations. The lateral flow function is determined by minimizing the total energy dissipation rate. Experimental investigation was carried out on a reversible cold mill. The front tension stress distributions in cold rolled strips were measured by a multi roll segmented tension sensing shapemeter. The calculated results are in good agreement with the measured ones. 展开更多
关键词 strip rolling 3D deformation and stress elastoplastic analysis variational principle
下载PDF
Effect of bending and tension deformation on the texture evolution and stretch formability of Mg-Zn-RE-Zr alloy 被引量:2
16
作者 Yuya Ishiguro Xinsheng Huang +2 位作者 Yuhki Tsukada Toshiyuki Koyama Yasumasa Chino 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1334-1342,共9页
Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on th... Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on the texture formation and room-temperature formability of specimens were investigated.The specimen subjected to 3-pass bending and tension deformations exhibited an excellent Erichsen value of 9.6 mm.However,the Erichsen value deterioration was observed in the specimen subjected to 7-pass deformations.The rolling direction-split texture developed on the surface with an increasing pass number of deformations.Conversely,the clear TD-split texture remained at the central part.As a result,a quadrupole texture was macroscopically developed with an increasing pass number of deformations.The reduction in anisotropy by the formation of the quadrupole texture is suggested to be the main reason for the improvement in stretch formability.By contrast,the generation of coarse grains near the surface is suggested to be the direct cause for the deterioration of the stretch formability of the specimen subjected to 7-pass deformations. 展开更多
关键词 magnesium alloy texture stretch formability bending and tension deformation mechanical properties
下载PDF
Iterative reverse deformation optimization design of castings based on numerical simulation of solidification thermal stress 被引量:2
17
作者 Yu-hao Chen Dun-ming Liao +3 位作者 Wei-dong Li Tao Chen Ming Yang Jun-ke Shi 《China Foundry》 SCIE CAS 2022年第4期342-350,共9页
In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compen... In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compensation method has a decisive impact on the dimensional accuracy of the actual casting.In this study,based on solidification simulation,a design method of reverse deformation is proposed,and two compensation methods,empirical compensation and direct reverse deformation,are implemented.The simulation results show that the empirical compensation method has problems such as difficulty in determining the parameters and satisfaction of both the overall and local accuracy at the same time;while based on the simulation results for each node of the casting,the direct reverse deformation design achieves the design with shape.In addition,the casting model can be optimized through iterative revisions,so that higher dimensional accuracy can be continuously obtained in the subsequent design process.Therefore,the direct reverse deformation design is more accurate and reasonable compared to empirical compensation method. 展开更多
关键词 casting simulation thermal stress deformation dimensional compensation dimensional accuracy
下载PDF
Research on flow stress in ferrite deformation of a Ti-IF steel 被引量:1
18
作者 Guang Xu Chushao Xu +1 位作者 Jiarong Zhao Xianjun Liu 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期34-36,共3页
The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carded out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were... The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carded out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were analyzed. New flow stress models suitable to ferrite warm forming of Ti-IF steel were given on the basis of analyzing the influence of deformation technology parameters on the flow stress. 展开更多
关键词 ULC Ti-IF steel ferrite deformation flow stress MODEL
下载PDF
Numerical simulation of residual stress and deformation for submerged arc welding of Q690D high strength low alloy steel thick plate 被引量:6
19
作者 朱梓坤 韩阳 +2 位作者 张舟 张义 周龙早 《China Welding》 CAS 2021年第3期49-58,共10页
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen... The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used. 展开更多
关键词 numerical simulation multi-layer and multi-pass welding Q690D high strength low alloy steel welding residual stress and deformation
下载PDF
Effects of Plastic Deformation and Stresses on Dilatation duringthe Martensitic Transformation in a B-bearing Steel 被引量:2
20
作者 M. C.Somani and L.P.Karjalainen Dept. of Mechanical Engineering, University of Oulu, Oulu, Finland M. Oldenburg and M.Eriksson Dept. of Mechanical Engineering, Lulea University of Technology, Lulea, Sweden 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期203-206,共4页
To provide data for improved modelling of the behaviour of steel components in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transfo... To provide data for improved modelling of the behaviour of steel components in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transformation in a B-bearing steel were investigated. It was found that plastic deformation of austenite at high temperatures enhances ferrite formation significantly, and consequently, the dilatation decreases markedly even at a cooling rate of 280'C/s. The created ferritic-martensitic microstructure possesses clearly lower hardness and strength than the martensitic structure. Elastic stresses cause the preferred orientation in martensite to be formed so that diametric dilatation can increase by nearly 200% under axial compression. 展开更多
关键词 Effects of Plastic deformation and stresses on Dilatation duringthe Martensitic Transformation in a B-bearing Steel
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部