To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched l...To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.展开更多
Many observational studies have shown that deformation, like vertical vorticity and divergence, is closely related to the occurrence and distribution of strong precipitation. In this paper, to involve deformation in p...Many observational studies have shown that deformation, like vertical vorticity and divergence, is closely related to the occurrence and distribution of strong precipitation. In this paper, to involve deformation in precipitation diagnosis, a new parameter called potential deformation(PD) is derived and then applied to precipitation detection within a simulated mesoscale convective system(MCS). It is shown that PD includes both stretching deformation and shearing deformation and shares similar characteristics with deformation insofar as it does not change with the rotating coordinate. Diagnosis of the simulated MCS reveals that PD performs well in tracing the MCS' precipitation. In terms of their distributional pattern, the large-value areas of PD are similar to the precipitation in the different development stages of the MCS. A detailed analysis of the physical processes contained within the PD shows that it can reflect the three-dimensional moisture variation,vertical wind shear and wind deformation within the MCS. These structures are usually a comprehensive reflection of the characteristics of the surface cold pool, rear inflow jet, downward cold air flow and upward warm moist flow within the precipitating convective cells. For this reason, the PD shows much stronger anomalies in the precipitating atmosphere than the non-precipitating atmosphere, which implies considerable potential for its application in detecting heavy precipitation within MCSs.展开更多
基金supported by the National Natural Science Foundation of China(61571022611971022)。
文摘To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.
基金supported by the Special Scientific Research Fund of the Meteorological Public Welfare of the Ministry of Sciences and Technology (Grant No. GYHY201406002, GYHY201406001)National Key Technology Support Program (Grant No. 2015BAC03B04)+4 种基金a National Program on Key Basic Research project (Grant No. 2013CB430105)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91437215)the National Natural Science Foundation of China (Grant Nos. 41505040, 41375052 41405055 and 41575065)the Open Project of the State Key Laboratory of Severe Weather (La SW), the Chinese Academy of Meteorological Sciences (CAMS) (Grant No. 2015LASW-B05)the Beijing Natural Sciences Foundation (Grant No. 8142035)
文摘Many observational studies have shown that deformation, like vertical vorticity and divergence, is closely related to the occurrence and distribution of strong precipitation. In this paper, to involve deformation in precipitation diagnosis, a new parameter called potential deformation(PD) is derived and then applied to precipitation detection within a simulated mesoscale convective system(MCS). It is shown that PD includes both stretching deformation and shearing deformation and shares similar characteristics with deformation insofar as it does not change with the rotating coordinate. Diagnosis of the simulated MCS reveals that PD performs well in tracing the MCS' precipitation. In terms of their distributional pattern, the large-value areas of PD are similar to the precipitation in the different development stages of the MCS. A detailed analysis of the physical processes contained within the PD shows that it can reflect the three-dimensional moisture variation,vertical wind shear and wind deformation within the MCS. These structures are usually a comprehensive reflection of the characteristics of the surface cold pool, rear inflow jet, downward cold air flow and upward warm moist flow within the precipitating convective cells. For this reason, the PD shows much stronger anomalies in the precipitating atmosphere than the non-precipitating atmosphere, which implies considerable potential for its application in detecting heavy precipitation within MCSs.