This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering the...This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.展开更多
This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by...This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by Darcy-Forchheimer.The subsequent arrangement of partial differential equations is changed into ordinary differential framework through proper transformations.Numerical arrangements of governing frameworks are set up by NDSolve procedure.Outcomes of different sundry parameters on temperature and velocity are examined.Skin friction and heat transfer rate are also shown and inspected.展开更多
The present article comprises the study on the influence of exponential space based heat generation on the non-Darcy-Forchheimer flow of carbon nanotubes(CNTs).The flow is considered over a curved stretching sheet.Sim...The present article comprises the study on the influence of exponential space based heat generation on the non-Darcy-Forchheimer flow of carbon nanotubes(CNTs).The flow is considered over a curved stretching sheet.Similarity variables are used to reduce the flow descriptive nonlinear partial derivative equations to simple equations.Simplified equations are then solved by the exploiting Runge-Kutta-Fehlberg fourth-and fifth-order methods.Obtained numerical solutions are shown in graphs and tables.Comparison between single and multi-walled CNTs has been established through the tabulated values and plotted graphs.It is concluded that the heat source parameter plays a prime role in enhancement of temperature,and the curvature parameter has adverse impact on velocity and temperature panels.Both the inertial parameter and inverse-Darcy number affect the fluid velocity.展开更多
The two-dimensional(2D) motion of the Jeffrey fluid by the curved stretching sheet coiled in a circle is investigated. The non-Fourier heat flux model is used for the heat transfer analysis. Feasible similarity variab...The two-dimensional(2D) motion of the Jeffrey fluid by the curved stretching sheet coiled in a circle is investigated. The non-Fourier heat flux model is used for the heat transfer analysis. Feasible similarity variables are used to transform the highly nonlinear ordinary equations to partial differential equations(PDEs). The homotopy technique is used for the convergence of the velocity and temperature equations. The effects of the involved parameters on the physical properties of the fluid are described graphically.The results show that the curvature parameter is an increasing function of velocity and temperature, and the temperature is a decreasing function of the thermal relaxation time.Besides, the Deborah number has a reverse effect on the pressure and surface drag force.展开更多
As the spring equation is limited to the accuracy of mill stiffness and the linearity of the mill spring curve, the traditional gaugemeter automatic gauge control(GM-AGC) system based on spring equation cannot meet th...As the spring equation is limited to the accuracy of mill stiffness and the linearity of the mill spring curve, the traditional gaugemeter automatic gauge control(GM-AGC) system based on spring equation cannot meet the requirements of practical production. In allusion to this problem, a kind of novel GM-AGC system based on mill stretch characteristic curve was proposed. The error existing in calculating strip thickness by spring equation were analyzed first. And then the mill stretch characteristic curve which could effectively eliminate the influence of mill stiffness was described. The novel GM-AGC system has been applied successfully in a hot strip mill, the application results show that the thickness control precision is improved significantly, with the novel GM-AGC system, over 98.6% of the strip thickness deviation of 3.0 mm class can be controlled within the target tolerances of ±20 μm.展开更多
Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is origin...Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is originated.Heat source is present.Xue relation of nanoliquid is employed to explore the feature of CNTs (single and multi-wall).Transformation technique is adopted in order to achieve non-linear ordinary differential systems.The governing systems are solved numerically.Effects of involved parameters on flow,temperature,concentration,heat transfer rate (Nusselt number) with addition of skin friction coefficient are illustrated graphically.Decay in velocity is noted with an increment in Forchheimer number and porosity parameter while opposite impact is seen for temperature.Moreover,role of MWCNTs is prominent when compared with SWCNTs.展开更多
文摘This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.
文摘This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by Darcy-Forchheimer.The subsequent arrangement of partial differential equations is changed into ordinary differential framework through proper transformations.Numerical arrangements of governing frameworks are set up by NDSolve procedure.Outcomes of different sundry parameters on temperature and velocity are examined.Skin friction and heat transfer rate are also shown and inspected.
文摘The present article comprises the study on the influence of exponential space based heat generation on the non-Darcy-Forchheimer flow of carbon nanotubes(CNTs).The flow is considered over a curved stretching sheet.Similarity variables are used to reduce the flow descriptive nonlinear partial derivative equations to simple equations.Simplified equations are then solved by the exploiting Runge-Kutta-Fehlberg fourth-and fifth-order methods.Obtained numerical solutions are shown in graphs and tables.Comparison between single and multi-walled CNTs has been established through the tabulated values and plotted graphs.It is concluded that the heat source parameter plays a prime role in enhancement of temperature,and the curvature parameter has adverse impact on velocity and temperature panels.Both the inertial parameter and inverse-Darcy number affect the fluid velocity.
文摘The two-dimensional(2D) motion of the Jeffrey fluid by the curved stretching sheet coiled in a circle is investigated. The non-Fourier heat flux model is used for the heat transfer analysis. Feasible similarity variables are used to transform the highly nonlinear ordinary equations to partial differential equations(PDEs). The homotopy technique is used for the convergence of the velocity and temperature equations. The effects of the involved parameters on the physical properties of the fluid are described graphically.The results show that the curvature parameter is an increasing function of velocity and temperature, and the temperature is a decreasing function of the thermal relaxation time.Besides, the Deborah number has a reverse effect on the pressure and surface drag force.
基金Project(51074051) supported by the National Natural Science Foundation of ChinaProject(N110307001) supported by the Fundamental Research Funds for the Central Universities,China
文摘As the spring equation is limited to the accuracy of mill stiffness and the linearity of the mill spring curve, the traditional gaugemeter automatic gauge control(GM-AGC) system based on spring equation cannot meet the requirements of practical production. In allusion to this problem, a kind of novel GM-AGC system based on mill stretch characteristic curve was proposed. The error existing in calculating strip thickness by spring equation were analyzed first. And then the mill stretch characteristic curve which could effectively eliminate the influence of mill stiffness was described. The novel GM-AGC system has been applied successfully in a hot strip mill, the application results show that the thickness control precision is improved significantly, with the novel GM-AGC system, over 98.6% of the strip thickness deviation of 3.0 mm class can be controlled within the target tolerances of ±20 μm.
文摘Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is originated.Heat source is present.Xue relation of nanoliquid is employed to explore the feature of CNTs (single and multi-wall).Transformation technique is adopted in order to achieve non-linear ordinary differential systems.The governing systems are solved numerically.Effects of involved parameters on flow,temperature,concentration,heat transfer rate (Nusselt number) with addition of skin friction coefficient are illustrated graphically.Decay in velocity is noted with an increment in Forchheimer number and porosity parameter while opposite impact is seen for temperature.Moreover,role of MWCNTs is prominent when compared with SWCNTs.