Let X, Y be reflexive strictly convex Banach spaces, let T, δT : X → Y be bounded linear operators with closed range R(T). Put T= T + δT. In this paper, by using the concept of quasiadditivity and the so called...Let X, Y be reflexive strictly convex Banach spaces, let T, δT : X → Y be bounded linear operators with closed range R(T). Put T= T + δT. In this paper, by using the concept of quasiadditivity and the so called generalized Neumman lemma, we will give some error estimates of the bounds of ||T^M||. By using a relation between the concepts of the reduced minimum module and the gap of two subspaces, some new existence characterization of the Moore-Penrose metric generalized inverse T^M of the perturbed operator T will be also given.展开更多
基金The research was supported by the Science Rreasch Grant (10553024) of Education Department of Heilongjiang Province and NSF Grant (10471032) of China
基金supported by China Postdoctoral Science Foundation(Grant No.2015M582186)He’nan Institute of Science and Technology Postdoctoral Science Foundation(Grant No.5201029470209)
文摘Let X, Y be reflexive strictly convex Banach spaces, let T, δT : X → Y be bounded linear operators with closed range R(T). Put T= T + δT. In this paper, by using the concept of quasiadditivity and the so called generalized Neumman lemma, we will give some error estimates of the bounds of ||T^M||. By using a relation between the concepts of the reduced minimum module and the gap of two subspaces, some new existence characterization of the Moore-Penrose metric generalized inverse T^M of the perturbed operator T will be also given.