Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not gen...Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not generalized strictly diagonally dominant matrix.In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.展开更多
In this paper,the solution of a parallel redundant repairable system is investigated.by using the method of functional analysis.Especially,the linear semigroups of operator theory on Banach space,we prove the existenc...In this paper,the solution of a parallel redundant repairable system is investigated.by using the method of functional analysis.Especially,the linear semigroups of operator theory on Banach space,we prove the existence of the strictly dominant eigenvalue,and show the linear stability of solution.展开更多
The reliability of a complex system passes through a gradual deterioration until at some critical level, the system fails completely. The study of the exponential stability of such a system requires the application of...The reliability of a complex system passes through a gradual deterioration until at some critical level, the system fails completely. The study of the exponential stability of such a system requires the application of functional analysis and, particularly, the theory of linear operators in Banach space to demonstrate the existence of strictly dominant eigenvalue. Through analyzing the variation of the essential spectral radius of semigroups before and after perturbation, it is shown that the dynamic solution of the system converges to the steady-state solution of the system exponentially under certain condition.展开更多
The paper presents a model of a redundant robot configuration with a built-in safety. By the method of strong continuous semi-group, the paper analyzes the essential spectrum of the system operator before and after pe...The paper presents a model of a redundant robot configuration with a built-in safety. By the method of strong continuous semi-group, the paper analyzes the essential spectrum of the system operator before and after perturbation. The results show that in s special condition, the dynamic solution of the system is exponential stability and tends to the steady solution of the system.展开更多
基金Supported by the National Natural Science Foundation of China(71261010)
文摘Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc.But it is difficult to judge a matrix is or not generalized strictly diagonally dominant matrix.In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.
基金Supported by the Nature Science Foundation of Henan Education Committee(2008A110022)
文摘In this paper,the solution of a parallel redundant repairable system is investigated.by using the method of functional analysis.Especially,the linear semigroups of operator theory on Banach space,we prove the existence of the strictly dominant eigenvalue,and show the linear stability of solution.
文摘The reliability of a complex system passes through a gradual deterioration until at some critical level, the system fails completely. The study of the exponential stability of such a system requires the application of functional analysis and, particularly, the theory of linear operators in Banach space to demonstrate the existence of strictly dominant eigenvalue. Through analyzing the variation of the essential spectral radius of semigroups before and after perturbation, it is shown that the dynamic solution of the system converges to the steady-state solution of the system exponentially under certain condition.
文摘The paper presents a model of a redundant robot configuration with a built-in safety. By the method of strong continuous semi-group, the paper analyzes the essential spectrum of the system operator before and after perturbation. The results show that in s special condition, the dynamic solution of the system is exponential stability and tends to the steady solution of the system.