该文利用一个严格集压缩不动点定理,得到了如下形式的一类时标上具状态依赖时滞的中立型泛函微分方程周期正解存在性的充分条件x~Δ(t)=x(t)[r(t)-a(t)x(t)-sum from j=1 to n a_j(t)x(t-Υ_j(t,x(t)))-sum from j=1 to n c_j(t)x~Δ(t-...该文利用一个严格集压缩不动点定理,得到了如下形式的一类时标上具状态依赖时滞的中立型泛函微分方程周期正解存在性的充分条件x~Δ(t)=x(t)[r(t)-a(t)x(t)-sum from j=1 to n a_j(t)x(t-Υ_j(t,x(t)))-sum from j=1 to n c_j(t)x~Δ(t-σ_j(t,x(t)))],其中r,a,a_j,c_j∈C(T,R^+)(j=1,2,…,n)是ω-周期函数,Υ_j,σ_j∈C(T×R,T)(j=1,2,…,n)分别是其第一变元的ω-周期函数.展开更多
By using fixed point index theory of cone mapping and extension method, this paper discusses the existence of multiple positive solution of nonlinear neutral integral equatious modeling infectious disease.
文摘该文利用一个严格集压缩不动点定理,得到了如下形式的一类时标上具状态依赖时滞的中立型泛函微分方程周期正解存在性的充分条件x~Δ(t)=x(t)[r(t)-a(t)x(t)-sum from j=1 to n a_j(t)x(t-Υ_j(t,x(t)))-sum from j=1 to n c_j(t)x~Δ(t-σ_j(t,x(t)))],其中r,a,a_j,c_j∈C(T,R^+)(j=1,2,…,n)是ω-周期函数,Υ_j,σ_j∈C(T×R,T)(j=1,2,…,n)分别是其第一变元的ω-周期函数.
文摘By using fixed point index theory of cone mapping and extension method, this paper discusses the existence of multiple positive solution of nonlinear neutral integral equatious modeling infectious disease.