This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unk...In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.展开更多
This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more com...This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more complex cases,i.e.,the subsystems in the considered SFSs are assumed to have increasing dimensions.By transforming the systems into highorder fully-actuated system(HOFAS)models,the stabilizing controllers can be directly given.Besides first-order SFSs,secondorder and high-order SFSs are also considered.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary a...Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.展开更多
Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectur...Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.展开更多
As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy o...As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.展开更多
Shen et al’s retrospective study aims to compare the utility of two separate scoring systems for predicting mortality attributable to gastrointestinal(GI)injury in critically ill patients[the GI Dysfunction Score(GID...Shen et al’s retrospective study aims to compare the utility of two separate scoring systems for predicting mortality attributable to gastrointestinal(GI)injury in critically ill patients[the GI Dysfunction Score(GIDS)and the Acute Gastroin-testinal Injury(AGI)grade].The authors note that this study is the first proposal that suggests an equivalence between the ability of both scores to predict mor-tality at 28 days from intensive care unit(ICU)admission.Shen et al retrospec-tively analysed an ICU cohort of patients utilising two physicians administering both the AGI grade and GIDS score,using electronic healthcare records and ICU flowsheets.Where these physicians disagreed about the scores,the final decision as to the scores was made by an associate chief physician,or chief physician.We note that the primary reason for the development of GIDS was to create a clear score for GI dysfunction,with minimal subjectivity or inter-operator variability.The subjectivity inherent to the older AGI grading system is what ultimately led to the development of GIDS in 2021.By ensuring consensus between physicians administering the AGI,Shen et al have controlled for one of this grading systems biggest issues.We have concerns,however,that this does not represent the real-world challenges associated with applying the AGI compared to the newer GIDS,and wonder if this arbitration process had not been instituted,would the two scoring systems remain equivalent in terms of predicted mortality?展开更多
In this paper,we present a novel adaptive performance control approach for strict-feedback nonparametric systems with unknown time-varying control coefficients,which mainly includes the following steps.Firstly,by intr...In this paper,we present a novel adaptive performance control approach for strict-feedback nonparametric systems with unknown time-varying control coefficients,which mainly includes the following steps.Firstly,by introducing several key transformation functions and selecting the initial value of the time-varying scaling function,the symmetric prescribed performance with global and semi-global properties can be handled uniformly,without the need for control re-design.Secondly,to handle the problem of unknown time-varying control coefficient with an unknown sign,we propose an enhanced Nussbaum function(ENF)bearing some unique properties and characteristics,with which the complex stability analysis based on specific Nussbaum functions as commonly used is no longer required.Thirdly,by utilizing the core-function information technique,the nonparametric uncertainties in the system are gracefully handled so that no approximator is required.Furthermore,simulation results verify the effectiveness and benefits of the approach.展开更多
This paper focuses on the distributed cooperative learning(DCL)problem for a class of discrete-time strict-feedback multi-agent systems under directed graphs.Compared with the previous DCL works based on undirected gr...This paper focuses on the distributed cooperative learning(DCL)problem for a class of discrete-time strict-feedback multi-agent systems under directed graphs.Compared with the previous DCL works based on undirected graphs,two main challenges lie in that the Laplacian matrix of directed graphs is nonsymmetric,and the derived weight error systems exist n-step delays.Two novel lemmas are developed in this paper to show the exponential convergence for two kinds of linear time-varying(LTV)systems with different phenomena including the nonsymmetric Laplacian matrix and time delays.Subsequently,an adaptive neural network(NN)control scheme is proposed by establishing a directed communication graph along with n-step delays weight updating law.Then,by using two novel lemmas on the extended exponential convergence of LTV systems,estimated NN weights of all agents are verified to exponentially converge to small neighbourhoods of their common optimal values if directed communication graphs are strongly connected and balanced.The stored NN weights are reused to structure learning controllers for the improved control performance of similar control tasks by the“mod”function and proper time series.A simulation comparison is shown to demonstrate the validity of the proposed DCL method.展开更多
This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe...This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st...A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.展开更多
This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of un...This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlin...In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.展开更多
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金supported in part by the National Key Research and Development Program of China under grant(No.2022YFB4701400/4701401)by the National Natural Science Foundation of China under grant(No.61991400,No.61991403,No.62250710167,No.61860206008,No.61933012,No.62273064,No.62203078)+2 种基金in part by the National Key Research and Development Program of China under grant(No.2021ZD0201300)in part by the Innovation Support Program for International Students Returning to China under grant(No.cx2022016)in part by the Chongqing Medical Scientific Research Project under grant(No.2022DBXM001).
文摘In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.
基金partly supported by Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)the National Natural Science Foundation of China(NSFC)(62350055)。
文摘This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more complex cases,i.e.,the subsystems in the considered SFSs are assumed to have increasing dimensions.By transforming the systems into highorder fully-actuated system(HOFAS)models,the stabilizing controllers can be directly given.Besides first-order SFSs,secondorder and high-order SFSs are also considered.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金supported by the National Natural Science Foundation of China(Grant No.82270892)Natural Science Foundation of Hubei Province(Grant No.2022CFB287)+2 种基金Xianning City Science and Technology Plan Project(Grant No.2022ZRKX052)School projects of Hubei University of Science and Technology(Grant No.2022T01,2021WG05,2021TNB01)Hubei University of Science and Technology School-level Fund(Grant No.BK202122).
文摘Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.
基金supported by the National Natural Science Foundation of China(Grant No.62074163)Beijing Natural Science Foundation(Grant No.JQ24030).
文摘Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.
基金funded by the National Key R&D Program of China,grant number 2019YFB1505400.
文摘As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.
文摘Shen et al’s retrospective study aims to compare the utility of two separate scoring systems for predicting mortality attributable to gastrointestinal(GI)injury in critically ill patients[the GI Dysfunction Score(GIDS)and the Acute Gastroin-testinal Injury(AGI)grade].The authors note that this study is the first proposal that suggests an equivalence between the ability of both scores to predict mor-tality at 28 days from intensive care unit(ICU)admission.Shen et al retrospec-tively analysed an ICU cohort of patients utilising two physicians administering both the AGI grade and GIDS score,using electronic healthcare records and ICU flowsheets.Where these physicians disagreed about the scores,the final decision as to the scores was made by an associate chief physician,or chief physician.We note that the primary reason for the development of GIDS was to create a clear score for GI dysfunction,with minimal subjectivity or inter-operator variability.The subjectivity inherent to the older AGI grading system is what ultimately led to the development of GIDS in 2021.By ensuring consensus between physicians administering the AGI,Shen et al have controlled for one of this grading systems biggest issues.We have concerns,however,that this does not represent the real-world challenges associated with applying the AGI compared to the newer GIDS,and wonder if this arbitration process had not been instituted,would the two scoring systems remain equivalent in terms of predicted mortality?
基金supported in part by the National Key Research and Development Program of China(2021ZD0201300)in part by the National Natural Science Foundation of China(61860206008,61933012)。
文摘In this paper,we present a novel adaptive performance control approach for strict-feedback nonparametric systems with unknown time-varying control coefficients,which mainly includes the following steps.Firstly,by introducing several key transformation functions and selecting the initial value of the time-varying scaling function,the symmetric prescribed performance with global and semi-global properties can be handled uniformly,without the need for control re-design.Secondly,to handle the problem of unknown time-varying control coefficient with an unknown sign,we propose an enhanced Nussbaum function(ENF)bearing some unique properties and characteristics,with which the complex stability analysis based on specific Nussbaum functions as commonly used is no longer required.Thirdly,by utilizing the core-function information technique,the nonparametric uncertainties in the system are gracefully handled so that no approximator is required.Furthermore,simulation results verify the effectiveness and benefits of the approach.
基金supported in part by the Guangdong Natural Science Foundation(2019B151502058)in part by the National Natural Science Foundation of China(61890922,61973129)+1 种基金in part by the Major Key Project of PCL(PCL2021A09)in part by the Guangdong Basic and Applied Basic Research Foundation(2021A1515012004)。
文摘This paper focuses on the distributed cooperative learning(DCL)problem for a class of discrete-time strict-feedback multi-agent systems under directed graphs.Compared with the previous DCL works based on undirected graphs,two main challenges lie in that the Laplacian matrix of directed graphs is nonsymmetric,and the derived weight error systems exist n-step delays.Two novel lemmas are developed in this paper to show the exponential convergence for two kinds of linear time-varying(LTV)systems with different phenomena including the nonsymmetric Laplacian matrix and time delays.Subsequently,an adaptive neural network(NN)control scheme is proposed by establishing a directed communication graph along with n-step delays weight updating law.Then,by using two novel lemmas on the extended exponential convergence of LTV systems,estimated NN weights of all agents are verified to exponentially converge to small neighbourhoods of their common optimal values if directed communication graphs are strongly connected and balanced.The stored NN weights are reused to structure learning controllers for the improved control performance of similar control tasks by the“mod”function and proper time series.A simulation comparison is shown to demonstrate the validity of the proposed DCL method.
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
基金supported by the National Natural Science Foundation of China(82230117).
文摘This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the National Natural Science Foundation of China(11502288)the Natural Science Foundation of Hunan Province(2016JJ3019)+1 种基金the Aeronautical Science Foundation of China(2017ZA88001)the Scientific Research Project of National University of Defense Technology(ZK17-03-32)
文摘A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.
基金Research Grants Council of Hong Kong under Grant CityU-11205221.
文摘This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金This work was supported by the National Natural Science Foundation of China (No.60674055)the Taishan Scholar programme and the NaturalScience Foundation of Shandong Province (No.Y2006G04)
文摘In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.