For any two n-th order polynomials a(s) and b(s), the Hurwitz stability of their convex combination is necessary and sufficient for the existence of a polynomial c(s) such that c(s)/a(s) and c(s)/b(s) are both strictl...For any two n-th order polynomials a(s) and b(s), the Hurwitz stability of their convex combination is necessary and sufficient for the existence of a polynomial c(s) such that c(s)/a(s) and c(s)/b(s) are both strictly positive real.展开更多
A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dyn...A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.展开更多
For a class of control systems with disc uncertainties, robust performance anaysis is developed. On the strictly positive realness and H-infinity-norm of uncertain systems, from the geometric point of view, two new su...For a class of control systems with disc uncertainties, robust performance anaysis is developed. On the strictly positive realness and H-infinity-norm of uncertain systems, from the geometric point of view, two new sufficient and necessary conditions are given. The largest H-infinity-norm bound, containing the coefficients of only stable polynomials and centered at a nominal stable point in the coecient space is found. The results obtained in the paper are tractable and concise, which is illustrated by some numerical examples.展开更多
An improved Narendra model reference adaptive control (MRAC) scheme isproposed to research one variable displacement pump driving four hydraulic variable displacementmotors. This approach not only ensures the underdam...An improved Narendra model reference adaptive control (MRAC) scheme isproposed to research one variable displacement pump driving four hydraulic variable displacementmotors. This approach not only ensures the underdamped and unstable system be global uniformasymptotic stability, but also has good robustness in these aspects of modeling uncertainty,pressure fluctuation of constant pressure network, and disturbance from external load, which alsoupgrades the rapidity of system response so as to make controlled system with nicer dynamic quality.The scheme of one pump driving four motors can meet the demand on off-road mobility of engineeringvehicles and armored cars. A proof of stability about improved Narendra MRAC scheme is also given.展开更多
Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems, it is restricted by the almost strictly positive real (ASP...Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems, it is restricted by the almost strictly positive real (ASPR) conditions. In most practical control problems, the ASPR conditions are not satisfied. Therefore, based on the SAC theory, this paper proposes a backstepping simple adaptive control algorithm which suits the system with arbitrary relative degree with no need of parallel feed forward compensa- tor. The proposed control algorithm consists of decomposition of the arbitrary relative degree system into a known subsystem and an unknown ASPR subsystem which are connected in cascade, design of constant output feedback controller for the known subsystem, and implementation of backstepping method and SAC of the unknown ASPR subsystem. Inheriting the characteristics of the SAC, this method can be adaptive online for the parameter uncertainties. Then, the application of the proposed controller to large flexible space structure with collocated sensors and actuators is studied, and the simulation results validate the proposed controller. It is a new strategy to apply the classical SAC to high relative degree plants.展开更多
A high-precision fuzzy controller, based on a state observer, is developed for a class of nonlinear single-input-single-output(SISO) systems with system uncertainties and external disturbances. The state observer is i...A high-precision fuzzy controller, based on a state observer, is developed for a class of nonlinear single-input-single-output(SISO) systems with system uncertainties and external disturbances. The state observer is introduced to resolve the problem of the unavailability of state variables. Assisted by the observer, a variable universe fuzzy system is designed to approximate the ideal control law. Being auxiliary components, a robust control term and a state feedback control term are designed to suppress the influence of the lumped uncertainties and remove the observation error, respectively. Different from the existing results, no additional dynamic order is required for the control design. All the adaptive laws and the control law are built based on the Lyapunov synthesis approach, and the signals involved in the closed-loop system are guaranteed to be uniformly ultimately bounded. Simulation results performed on Duffing forced oscillation demonstrate the advantages of the proposed control scheme.展开更多
文摘For any two n-th order polynomials a(s) and b(s), the Hurwitz stability of their convex combination is necessary and sufficient for the existence of a polynomial c(s) such that c(s)/a(s) and c(s)/b(s) are both strictly positive real.
基金supported by the National Natural Science Foundation of China (6096400460864004+2 种基金50808025)the Fok Ying Tung Education Foundation (122013)the Scientific Research Fund of Hunan Provincial Education Department (08A003)
文摘A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.
文摘For a class of control systems with disc uncertainties, robust performance anaysis is developed. On the strictly positive realness and H-infinity-norm of uncertain systems, from the geometric point of view, two new sufficient and necessary conditions are given. The largest H-infinity-norm bound, containing the coefficients of only stable polynomials and centered at a nominal stable point in the coecient space is found. The results obtained in the paper are tractable and concise, which is illustrated by some numerical examples.
文摘An improved Narendra model reference adaptive control (MRAC) scheme isproposed to research one variable displacement pump driving four hydraulic variable displacementmotors. This approach not only ensures the underdamped and unstable system be global uniformasymptotic stability, but also has good robustness in these aspects of modeling uncertainty,pressure fluctuation of constant pressure network, and disturbance from external load, which alsoupgrades the rapidity of system response so as to make controlled system with nicer dynamic quality.The scheme of one pump driving four motors can meet the demand on off-road mobility of engineeringvehicles and armored cars. A proof of stability about improved Narendra MRAC scheme is also given.
基金National Natural Science Foundation of China(10902003)
文摘Although the simple adaptive control (SAC) is widely studied both in theory and application in flexible space structure control and other control problems, it is restricted by the almost strictly positive real (ASPR) conditions. In most practical control problems, the ASPR conditions are not satisfied. Therefore, based on the SAC theory, this paper proposes a backstepping simple adaptive control algorithm which suits the system with arbitrary relative degree with no need of parallel feed forward compensa- tor. The proposed control algorithm consists of decomposition of the arbitrary relative degree system into a known subsystem and an unknown ASPR subsystem which are connected in cascade, design of constant output feedback controller for the known subsystem, and implementation of backstepping method and SAC of the unknown ASPR subsystem. Inheriting the characteristics of the SAC, this method can be adaptive online for the parameter uncertainties. Then, the application of the proposed controller to large flexible space structure with collocated sensors and actuators is studied, and the simulation results validate the proposed controller. It is a new strategy to apply the classical SAC to high relative degree plants.
基金supported by National Natural Science Foundation of China(No.61074044)Basic and Cutting-edge Technology of Science and Technology Department of Henan Province(No.092300410178)
文摘A high-precision fuzzy controller, based on a state observer, is developed for a class of nonlinear single-input-single-output(SISO) systems with system uncertainties and external disturbances. The state observer is introduced to resolve the problem of the unavailability of state variables. Assisted by the observer, a variable universe fuzzy system is designed to approximate the ideal control law. Being auxiliary components, a robust control term and a state feedback control term are designed to suppress the influence of the lumped uncertainties and remove the observation error, respectively. Different from the existing results, no additional dynamic order is required for the control design. All the adaptive laws and the control law are built based on the Lyapunov synthesis approach, and the signals involved in the closed-loop system are guaranteed to be uniformly ultimately bounded. Simulation results performed on Duffing forced oscillation demonstrate the advantages of the proposed control scheme.