In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic dat...In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.展开更多
Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In ...Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.展开更多
The Piranshahr pull-apart basin,situated in the northwestern part of the Zagros Main Recent Fault(MRF),is characterized by two right-stepping segments of the dextral MRF.Here,a combination of finite element modeling t...The Piranshahr pull-apart basin,situated in the northwestern part of the Zagros Main Recent Fault(MRF),is characterized by two right-stepping segments of the dextral MRF.Here,a combination of finite element modeling techniques,especially twodimensional numerical modeling using ABAQUS software,along with field-based structural geological methods are used to assess the geometry and evolution of the pull-apart along the releasing stepovers in this strike-slip system.The utilized numerical approach applies two-dimensional(2D)finite-element modeling related to elastic Newtonian rheology to evaluate the distribution of stress and localization of strain within the pull-apart basin.This study provides valuable insights into the factors controlling the shape,as well as exploring the interaction between the pre-existing structures in this right-lateral strike-slip releasing stepover,pull-apart basin development in strike-slip systems,and stress-strain behavior by studying the impact of boundary conditions and fault overlap on the deformation pattern.The models consider three representative geometries of fault segment interactions,including underlapping,neutral,and overlapping stepovers,positioned at angles of 30°,45°,and 60°.The results indicate that increased overlap creates an extensive and elongated deformation pattern,while decrease overlap leads to block rotation and a narrow deformation pattern.In addition,the degree of overlapping between parallel strike-slip faults influences the stress and strain.The mean normal stress within the transtensional basin,located between the fault segments,exhibits an extensional nature,while the region outside the stepover experiences general compressive mean normal stresses.The Piranshahr transtensional pull-apart basin exemplifies the progressive evolution of underlapping stepovers,resulting in displaying an elongated rhomboidal to trapezoidal-shaped geometry over time.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
A special extended basin topography is developed in the middle segment of the Altyn Tagh Fault Zone. The ratio of its length to width is over 50. The long boundaries at the two sides of the basin are controlled by the...A special extended basin topography is developed in the middle segment of the Altyn Tagh Fault Zone. The ratio of its length to width is over 50. The long boundaries at the two sides of the basin are controlled by the straight normal faults with strike-slip component. Within the basin, the Cenozoic strata are spread. The Altyn Tagh main fault goes through the basin, and a series of strike-slip topography was formed within the basin. The reverse thrust structures were formed at the two sides of the center of the basin, thus making the geological bodies composed of old metamorphic rocks at the two sides of the basin extrude vertically, and forming the extended massif (mountain) at the sides of the basin and parallel to the basin. This special topography was called the strike-slip fault basin. The giant extended strike-slip fault basin began to form during Pliocene, and its topography was basically formed during the late Pleistocene. It is the special topography formed during the strike-slip deformation展开更多
The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of th...The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.展开更多
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of ...Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.展开更多
Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed i...Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation time is constrained at the end of Middle Ordovician of about 460 Ma according to U-Pb dating of the fault cements and seismic interpretation.(2) The formation of the strike-slip faults was controlled by the near N-S direction stress field caused by far-field compression of the closing of the Proto-Tethys Ocean.(3) The faults localization and characteristics were influenced by the pre-existing structures of the NE trending weakening zones in the basement and lithofacies change from south to north.(4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms.(5) Sequential slip accommodated deformation in the conjugate strike-slip fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault development in the central Tarim Basin. The regional and localized field stress, and pre-existing structures and lithofacies difference had strong impacts on the diversity of the strike-slip faults in the Tarim cratonic basin.展开更多
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i...Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.展开更多
Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship i...Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship is influenced by the accuracy of the methods and types of data utilized to investigate faults. In this study, seismic reflection data are used to investigate the throw and damage zone width of five strike-slip faults a ecting Ordovician carbonates of the Tarim intracraton basin,NW China. The results indicate that fault slips with a throw less than 200 m had formed wide damage zones up to 3000 m in width. Also, damage zone width is found to have both a positive correlation and a power-law relation with throw of two orders of magnitude, with a ratio of these values varying in a range of 2–15. The relationship between throw and damage zone width is not a simple power-law and changes its slope from small to larger size faults. The results indicate that throw scales well with damage zone width for the studied faults, and hence these can be used to predict fault geometries in the Tarim Basin. The study of the wide carbonate damage zones presented here provides new insights into scaling of large-size faults, which involve multiple faulting stages.展开更多
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem...Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.展开更多
Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component ...Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.展开更多
3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation ...3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation suggests that the faults in the southwestern Ordos Basin have three basic characteristics,namely extreme micro-scale,distinct vertical stratification,and regularity of planar distribution.These NS-,NW-,and NE-trending fault systems developed in the Meso-Neoproterozoic e Lower Ordovician strata.Of these,the NS-trending fault system mainly consists of consequent and antithetic faults which show clear syndepositional deformation.The fault systems in the Carboniferous e Middle-Lower Triassic strata are not clear on seismic reflection profiles.The NW-and NE-trending fault systems are developed in the Upper Triassic e Middle Jurassic strata.Of these,the NW-trending fault system appears as a negative flower structure in sectional view and in an en echelon pattern in plan-view;they show transtensional deformation.A NE-trending fault system that developed in the Lower Cretaceous e Cenozoic strata shows a Y-shaped structural style and tension-shear properties.A comprehensive analysis of the regional stress fields at different geologic times is essential to determine the development,distribution direction,and intensity of the activity of fault systems in the Ordos Basin.Current exploration suggests three aspects in which the faults within the Ordos Basin are crucial to oil and gas accumulation.Firstly,these faults serve as vertical barriers that cause the formation of two sets of relatively independent petroleum systems in the Paleozoic and Mesozoic strata respectively;this is the basis for the‘upper oil and lower gas’distribution pattern.Secondly,the vertical communication of these faults is favorable for oil and gas migration,thus contributing to the typical characteristics of multiple oil and gas fields within the basin,i.e.oil and gas reservoirs with multiple superimposed strata.Finally,these faults and their associated fractures improve the permeability of Mesozoic tight reservoirs,providing favorable conditions for oil enrichment in areas around the fault systems.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in...A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.展开更多
The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the gro...The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.展开更多
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ...Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.展开更多
A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon...A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon accumulation conditions,the geometry,kinematics,and reservoir control of a large synthetic overlapping transfer zone in the south of the Wenchang A subsag in the Zhujiang(Pearl)River Mouth basin were investigated.Results indicate that the development and evolution of the transfer zone was controlled by the interaction between pre-existing faults and regional stress transformation.The intense rifting of the main faults of the transfer zone controlled the development of source rocks and faultcontrolled slope break paleogeomorphology.The strike-slip overprint since the Oligocene is conducive to the formation of a large-scale fault-anticline trap,and the secondary faults in the transfer zone contribute to the hydrocarbon transportation.The conjugate intersection area of the NE-and NW-trending faults offers more opportunity for hydrocarbon migration and accumulation.展开更多
Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution...Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.展开更多
基金partly supported by the National Natural Science Foundation of China (Grant No. 4224100017)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance (Grant No.2020CX010300)。
文摘In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.
基金funded by the National Natural Science Foundation of China(No.U21B2063)the Science and Technology Department of China Petrochemical Corporation(Sinopec)(No.P21086-3,No.P22122).
文摘Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.
基金the financial support provided by (Shahid Beheshti University)
文摘The Piranshahr pull-apart basin,situated in the northwestern part of the Zagros Main Recent Fault(MRF),is characterized by two right-stepping segments of the dextral MRF.Here,a combination of finite element modeling techniques,especially twodimensional numerical modeling using ABAQUS software,along with field-based structural geological methods are used to assess the geometry and evolution of the pull-apart along the releasing stepovers in this strike-slip system.The utilized numerical approach applies two-dimensional(2D)finite-element modeling related to elastic Newtonian rheology to evaluate the distribution of stress and localization of strain within the pull-apart basin.This study provides valuable insights into the factors controlling the shape,as well as exploring the interaction between the pre-existing structures in this right-lateral strike-slip releasing stepover,pull-apart basin development in strike-slip systems,and stress-strain behavior by studying the impact of boundary conditions and fault overlap on the deformation pattern.The models consider three representative geometries of fault segment interactions,including underlapping,neutral,and overlapping stepovers,positioned at angles of 30°,45°,and 60°.The results indicate that increased overlap creates an extensive and elongated deformation pattern,while decrease overlap leads to block rotation and a narrow deformation pattern.In addition,the degree of overlapping between parallel strike-slip faults influences the stress and strain.The mean normal stress within the transtensional basin,located between the fault segments,exhibits an extensional nature,while the region outside the stepover experiences general compressive mean normal stresses.The Piranshahr transtensional pull-apart basin exemplifies the progressive evolution of underlapping stepovers,resulting in displaying an elongated rhomboidal to trapezoidal-shaped geometry over time.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金This work was supported by the State Key Basic Research Development Project (Grant No. G1998040800).
文摘A special extended basin topography is developed in the middle segment of the Altyn Tagh Fault Zone. The ratio of its length to width is over 50. The long boundaries at the two sides of the basin are controlled by the straight normal faults with strike-slip component. Within the basin, the Cenozoic strata are spread. The Altyn Tagh main fault goes through the basin, and a series of strike-slip topography was formed within the basin. The reverse thrust structures were formed at the two sides of the center of the basin, thus making the geological bodies composed of old metamorphic rocks at the two sides of the basin extrude vertically, and forming the extended massif (mountain) at the sides of the basin and parallel to the basin. This special topography was called the strike-slip fault basin. The giant extended strike-slip fault basin began to form during Pliocene, and its topography was basically formed during the late Pleistocene. It is the special topography formed during the strike-slip deformation
基金supported by the Major National Science and Technology Projects of China (No. 2008ZX05029-002)CNPC Research Topics of China (No.07B60101)
文摘The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.
基金partly supportedby National Natural Science Foundation of China(Grant No.41472103)
文摘Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
基金Supported by the National Natural Science Foundation of China(91955204)PetroChina-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX010101)。
文摘Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation time is constrained at the end of Middle Ordovician of about 460 Ma according to U-Pb dating of the fault cements and seismic interpretation.(2) The formation of the strike-slip faults was controlled by the near N-S direction stress field caused by far-field compression of the closing of the Proto-Tethys Ocean.(3) The faults localization and characteristics were influenced by the pre-existing structures of the NE trending weakening zones in the basement and lithofacies change from south to north.(4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms.(5) Sequential slip accommodated deformation in the conjugate strike-slip fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault development in the central Tarim Basin. The regional and localized field stress, and pre-existing structures and lithofacies difference had strong impacts on the diversity of the strike-slip faults in the Tarim cratonic basin.
基金financially supported by the China Petroleum&Chemical Corporation(SINOPEC)(Grant No.P18047-2)the National Natural Science Foundation of China(Grant No.U19B6003-01)the National Key Research and Development Program of China(Grant No.2017YFC0601405)。
文摘Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.
基金partly supported by National Natural Science Foundation of China(Grant No.41472103)Technology Major Project(2016ZX05004001)
文摘Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship is influenced by the accuracy of the methods and types of data utilized to investigate faults. In this study, seismic reflection data are used to investigate the throw and damage zone width of five strike-slip faults a ecting Ordovician carbonates of the Tarim intracraton basin,NW China. The results indicate that fault slips with a throw less than 200 m had formed wide damage zones up to 3000 m in width. Also, damage zone width is found to have both a positive correlation and a power-law relation with throw of two orders of magnitude, with a ratio of these values varying in a range of 2–15. The relationship between throw and damage zone width is not a simple power-law and changes its slope from small to larger size faults. The results indicate that throw scales well with damage zone width for the studied faults, and hence these can be used to predict fault geometries in the Tarim Basin. The study of the wide carbonate damage zones presented here provides new insights into scaling of large-size faults, which involve multiple faulting stages.
基金Supported by the Science and Technology Cooperation Project of CNPC-SWPU Innovation Alliance (2020CX010101)National Natural Science Foundation of China (91955204)。
文摘Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.
基金partly supported by the National Natural Science Foundation of China(Grant No.91955204)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX010300)。
文摘Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.
基金project entitled Seismic Identification and Accumulation Control of Strike-Slip Faults in Superimposed Basins inWest-central Part of China initiated by the Bureau of Geophysical Prospecting,CNPC(No.:03-02-2022).
文摘3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation suggests that the faults in the southwestern Ordos Basin have three basic characteristics,namely extreme micro-scale,distinct vertical stratification,and regularity of planar distribution.These NS-,NW-,and NE-trending fault systems developed in the Meso-Neoproterozoic e Lower Ordovician strata.Of these,the NS-trending fault system mainly consists of consequent and antithetic faults which show clear syndepositional deformation.The fault systems in the Carboniferous e Middle-Lower Triassic strata are not clear on seismic reflection profiles.The NW-and NE-trending fault systems are developed in the Upper Triassic e Middle Jurassic strata.Of these,the NW-trending fault system appears as a negative flower structure in sectional view and in an en echelon pattern in plan-view;they show transtensional deformation.A NE-trending fault system that developed in the Lower Cretaceous e Cenozoic strata shows a Y-shaped structural style and tension-shear properties.A comprehensive analysis of the regional stress fields at different geologic times is essential to determine the development,distribution direction,and intensity of the activity of fault systems in the Ordos Basin.Current exploration suggests three aspects in which the faults within the Ordos Basin are crucial to oil and gas accumulation.Firstly,these faults serve as vertical barriers that cause the formation of two sets of relatively independent petroleum systems in the Paleozoic and Mesozoic strata respectively;this is the basis for the‘upper oil and lower gas’distribution pattern.Secondly,the vertical communication of these faults is favorable for oil and gas migration,thus contributing to the typical characteristics of multiple oil and gas fields within the basin,i.e.oil and gas reservoirs with multiple superimposed strata.Finally,these faults and their associated fractures improve the permeability of Mesozoic tight reservoirs,providing favorable conditions for oil enrichment in areas around the fault systems.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金This research was supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Natural Science Foundation of China(42072234).The authors would like to appreciate all the people,who supported the data,testing,and analyses.Many thanks to the anonymous reviewers,whose comments improve the quality of our manuscript.
文摘A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.
基金funded by the National Natural Science Foundation of China (grant No.41472116)the Jidong Oil Company of China National Petroleum Corporation (grant No.JDYT-2017-JS-308)the Beijing Research Centre of China National Offshore Oil Company (grant No.CCL2022RCPS2017XNN)。
文摘The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.
基金The National Natural Science Foundation of China under contract No.42276066the Key Research and Development Program(International Science and Technology Cooperation Development Program)of Hainan Province under contract No.GHYF2022009the Youth Innovation Promotion Association of CAS under contract No.2018401.
文摘Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.
基金Supported by the National Natural Science Foundation of China(Nos.42302155,42072169,42072235)the Natural Science Foundation of Shandong Province(No.ZR2023QD016)+2 种基金the China Postdoctoral Science Foundation(No.2022M713461)the Qingdao Postdoctoral Application Research Funds(No.QDBSH20220202067)the Fundamental Research Funds for the Central Universities(No.22CX06005A)。
文摘A transfer zone in rift basins preserves important information on regional tectonic evolution and plays significant roles in hydrocarbon accumulation.Based on the systematic analysis of 3D seismic data and hydrocarbon accumulation conditions,the geometry,kinematics,and reservoir control of a large synthetic overlapping transfer zone in the south of the Wenchang A subsag in the Zhujiang(Pearl)River Mouth basin were investigated.Results indicate that the development and evolution of the transfer zone was controlled by the interaction between pre-existing faults and regional stress transformation.The intense rifting of the main faults of the transfer zone controlled the development of source rocks and faultcontrolled slope break paleogeomorphology.The strike-slip overprint since the Oligocene is conducive to the formation of a large-scale fault-anticline trap,and the secondary faults in the transfer zone contribute to the hydrocarbon transportation.The conjugate intersection area of the NE-and NW-trending faults offers more opportunity for hydrocarbon migration and accumulation.
基金financially supported by the National Science Foundation of China(grant No.41372146)
文摘Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.