期刊文献+
共找到131,348篇文章
< 1 2 250 >
每页显示 20 50 100
Neotectonics of the Eastern Margin of the Tibetan Plateau: New Geological Evidence for the Change from Early Pleistocene Transpression to Late Pleistocene-Holocene Strike-slip Faulting 被引量:6
1
作者 ZHANG Yueqiao LI Hailong LI Jian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期467-485,共19页
We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred duri... We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred during the Early Pleistocene, evidenced by eastward thrusting of Mesozoic carbonates on the Pliocene lacustrine deposits along the Minjiang upstream fault zone and by development of the transpressional ridges of basement rocks along the Anninghe river valley. The Middle Pleistocene seems to be a relaxant stage with local development of the intra-mountain basins particularly prominent along the Minjiang Upstream and along the southern segment of the Anninghe River Valley. This relaxation may have been duo to a local collapse of the thickened crust attained during the late Neogene to early Pleistocene across this marginal zone. Fault kinematics has been changed since the late Pleistocene, and was predominated by reverse sinistral strike-slip along the Minshan Uplift, reverse dextral strike-slip on the Longmenshan fault zone and pure sinistral strike-slip on the Anninghe fault. This change in fault kinematics during the Quaternary allows a better understanding of the mechanism by which the marginal ranges of the plateau has been built through episodic activities. 展开更多
关键词 Quaternary transpression strike-slip faulting eastern margin of the Tibetan Plateau Minjiang upstream fault back Longmenshan fault Anninghe faulted valley
下载PDF
Late Paleozoic Element Migration and Accumulation under Intracontinental Sinistral Strike-slip Faulting in the West Junggar Orogenic Belt, NW China 被引量:2
2
作者 WANG Ye CHEN Xuanhua +5 位作者 NIE Lanshi DING Weicui WANG Xueqiu XU Shenglin MA Feizhou HAN Lele 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期2012-2030,共19页
The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-sl... The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-slip faulting,on the adjustment of geochemical element distribution,are still not clear.In this paper,we select the West Junggar Orogenic Belt(WJOB),NW China,as a case study to test the migration behavior of elements under tectonic dynamics.The WJOB is dominated by NE-trending large-scale sinistral strike-slip faults such as the Darabut Fault,the Mayile Fault,and the Baerluke Fault,which formed during the intracontinental adjustment under N-S compression during ocean-continental conversion in the Late Paleozoic.Geochemical maps of 13 elements,Al,W,Sn,Mo,Cu,Pb,Zn,As,Sb,Hg,Fe,Ni,and Au,are analyzed for the effects of faulting and folding on element distribution at the regional scale.The results show that the element distribution in the WJOB is controlled mainly by two mechanisms during tectonic deformation:first is the material transporting mechanism,where the movement of geological units is consistent with the direction of tectonic movement;second is the diffusion mechanism,especially by tectonic pressure dissolution driven by tectonic dynamics,where the migration of elements is approximately perpendicular or opposite to the direction of tectonic movement.We conclude that the adjustment of element distributions has been determined by the combined actions of transporting and diffusion mechanisms,and that the diffusion mechanism plays an important role in the formation of geochemical Au blocks in the WJOB. 展开更多
关键词 tectono-geochemistry strike-slip fault system element distribution GOLD West Junggar Central Asian Orogenic Belt
下载PDF
Semi-analytical solution for mechanical analysis of tunnels crossing strike-slip fault zone considering nonuniform fault displacement and uncertain fault plane position
3
作者 YANG Heng-hong WANG Ming-nian +1 位作者 YU Li ZHANG Xiao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2116-2136,共21页
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e... The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively. 展开更多
关键词 strike-slip fault tunnel engineering semi-analytical solution fault zone width nonuniform fault displacement uncertain fault plane position
下载PDF
The Middle and Lower Cambrian salt tectonics in the central Tarim Basin,China:A case study based on strike-slip fault characterization
4
作者 Qing Bian Jibiao Zhang Cheng Huang 《Energy Geoscience》 EI 2024年第2期53-61,共9页
Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In ... Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift. 展开更多
关键词 Tarim Basin Salt tectonics strike-slip fault Structural analysis Seismic interpretation of decoupling zone
下载PDF
Step-over of strike-slip faults and overpressure fluid favor occurrence of foreshocks:Insights from the 1975 Haicheng fore-main-aftershock sequence,China
5
作者 Xinglin Lei Zhiwei Wang +1 位作者 Shengli Ma Changrong He 《Earthquake Research Advances》 CSCD 2024年第1期36-46,共11页
This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in Februa... This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in February 1975.The foreshocks are related to the main fault and the conjugate faults surrounding the extension step-over in the middle.The initiation timing of the foreshock clusters and the original time of the mainshock were clearly modulated by the Earth's tidal force and coincided with the peak of dilational volumetric tidal strain.As a plausible and testable hypothesis,we proposed a fluid-driven foreshock model,by which all observed seismicity features can be more reasonably interpreted with respect to the results of existing models.Together with some other known examples,the widely existing step-over along strike-slip faults and associated conjugate faults,especially for extensional ones in the presence of deep fluids,favor the occurrence of short-term foreshocks.Although clustered seismicity with characteristics similar to those of the studied case is not a sufficient and necessary condition for large earthquakes to occur under similar tectonic conditions,it undoubtedly has a warning significance for the criticality of the main fault.Subsequent testing would require quantification of true/false positives/negatives. 展开更多
关键词 Haicheng earthquake Seismogenic fault ETAS FORESHOCK Deep fluid
下载PDF
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6,2023 Türkiye earthquake doublet
6
作者 Xiaoqing Fan Libao Zhang +2 位作者 Juke Wang Yefei Ren Aiwen Liu 《Earthquake Science》 2024年第1期78-90,共13页
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw... In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized. 展开更多
关键词 Türkiye earthquake fault displacement near-fault ground motion velocity pulse water supply pipeline
下载PDF
Formation and evolution of the strike-slip faults in the central Sichuan Basin, SW China 被引量:2
7
作者 MA Bingshan LIANG Han +7 位作者 WU Guanghui TANG Qingsong TIAN Weizhen ZHANG Chen YANG Shuai ZHONG Yuan ZHANG Xuan ZHANG Zili 《Petroleum Exploration and Development》 SCIE 2023年第2期373-387,共15页
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem... Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds. 展开更多
关键词 strike-slip fault fault timing fault evolution seismic-geological analysis U-Pb dating faulting mechanism cra-tonic Sichuan Basin
下载PDF
Control of strike-slip faults on Sinian carbonate reservoirs in Anyue gas field, Sichuan Basin, SW China
8
作者 HE Xiao TANG Qingsong +5 位作者 WU Guanghui LI Fei TIAN Weizhen LUO Wenjun MA Bingshan SU Chen 《Petroleum Exploration and Development》 SCIE 2023年第6期1282-1294,共13页
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn... The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs. 展开更多
关键词 pre-Cambrian strike-slip fault carbonate reservoir FRACTURING controlling factor Sichuan Basin
下载PDF
Analytical method for the mechanical response of buried pipeline under the action of strike-slip faulting 被引量:2
9
作者 Zhiping Hu Xiang Ren +2 位作者 Qiyao Wang Rui Wang Rui Pan 《Underground Space》 SCIE EI 2022年第2期268-277,共10页
Buried pipelines are commonly damaged when laid across strike-slip faults,always leading to some level of destruction with fault movement.The moment of the neutral axis of a pipe section was obtained by integration,an... Buried pipelines are commonly damaged when laid across strike-slip faults,always leading to some level of destruction with fault movement.The moment of the neutral axis of a pipe section was obtained by integration,and the equations for the bending moment and the bending strain on a pipeline’s section were presented here,based on a trilinear stress–strain model.The calculation method for the lateral soil pressure and pipeline’s bending strain near the fault-crossing point was improved.Lateral soil pressure was regarded as being related to lateral pipeline movement and,for accurate calculation,this part of the pipeline was divided into finite element segments.An iterative process for solving for pipe bending strain was derived,and the algorithm and program for calculating bending strain and the potential damage position of the pipeline’s sections was compiled based on Matlab software.Compared with finite element method(FEM)results and the current standard method,in the situation of a pipeline being in tension under the action of a strike-slip fault(intersection angle<90),the result of the proposed method is in good agreement with FEM results.This shows that the proposed analytical method possessed a good reference value for the strain response analysis of tensile steel pipelines under strike-slip faulting. 展开更多
关键词 strike-slip fault Buried pipeline Analytical method Mechanical response
原文传递
Fault characteristics and their control on oil and gas accumulation in the southwestern Ordos Basin
10
作者 Yongtao Liu Shuanghe Dai +7 位作者 Yijun Zhou Fufeng Ding Mingjie Li Xingyun Li Yu Zhao Binhua Guo Tong Li Junan Han 《Energy Geoscience》 EI 2024年第1期162-171,共10页
3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation ... 3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation suggests that the faults in the southwestern Ordos Basin have three basic characteristics,namely extreme micro-scale,distinct vertical stratification,and regularity of planar distribution.These NS-,NW-,and NE-trending fault systems developed in the Meso-Neoproterozoic e Lower Ordovician strata.Of these,the NS-trending fault system mainly consists of consequent and antithetic faults which show clear syndepositional deformation.The fault systems in the Carboniferous e Middle-Lower Triassic strata are not clear on seismic reflection profiles.The NW-and NE-trending fault systems are developed in the Upper Triassic e Middle Jurassic strata.Of these,the NW-trending fault system appears as a negative flower structure in sectional view and in an en echelon pattern in plan-view;they show transtensional deformation.A NE-trending fault system that developed in the Lower Cretaceous e Cenozoic strata shows a Y-shaped structural style and tension-shear properties.A comprehensive analysis of the regional stress fields at different geologic times is essential to determine the development,distribution direction,and intensity of the activity of fault systems in the Ordos Basin.Current exploration suggests three aspects in which the faults within the Ordos Basin are crucial to oil and gas accumulation.Firstly,these faults serve as vertical barriers that cause the formation of two sets of relatively independent petroleum systems in the Paleozoic and Mesozoic strata respectively;this is the basis for the‘upper oil and lower gas’distribution pattern.Secondly,the vertical communication of these faults is favorable for oil and gas migration,thus contributing to the typical characteristics of multiple oil and gas fields within the basin,i.e.oil and gas reservoirs with multiple superimposed strata.Finally,these faults and their associated fractures improve the permeability of Mesozoic tight reservoirs,providing favorable conditions for oil enrichment in areas around the fault systems. 展开更多
关键词 Coherent attribute strike-slip fault Flower structure Shale oil Ordos basin
下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
11
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending FI19 and FI20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the FI19 and FI20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the FI19 and FI20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the FI19 fault zone.The FI19 and FI20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the FI19 and FI20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
12
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
13
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
The MW5.5 earthquake on August 6,2023,in Pingyuan,Shandong,China:A rupture on a buried fault 被引量:2
14
作者 Zhe Zhang Lisheng Xu Lihua Fang 《Earthquake Science》 2024年第1期1-12,共12页
On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no act... On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future. 展开更多
关键词 Shandong Pingyuan MW5.5 earthquake double-difference earthquake location centroid moment tensor inversion buried fault
下载PDF
Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults 被引量:1
15
作者 Li-Ying Hao Gege Dong +1 位作者 Tieshan Li Zhouhua Peng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期956-964,共9页
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in... This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method. 展开更多
关键词 Actuator faults autonomous surface vehicle(ASVs) improved artificial potential function nonlinear state observer obstacle avoidance
下载PDF
Formation mechanism of fault accommodation zones under combined stress in graben basin:Implications from geomechanical modeling
16
作者 Qi-Qiang Ren Jin-Liang Gao +3 位作者 Rong-Tao Jiang Jin Wang Meng-Ping Li Jian-Wei Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期54-76,共23页
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in... A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ. 展开更多
关键词 fault accommodation zone Graben basin fault activity Tectonic physical simulation experiment Finite element numerical simulation Dongxin fault zone
下载PDF
Advances in seismological methods for characterizing fault zone structure
17
作者 Yan Cai Jianping Wu +1 位作者 Yaning Liu Shijie Gao 《Earthquake Science》 2024年第2期122-138,共17页
Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provid... Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures,including seismic tomography,fault zone seismic wave analysis,and seismicity analysis.Observational conditions limit our current ability to fully characterize fault zones,for example,insufficient imaging resolution to discern small-scale anomalies,incomplete capture of crucial fault zone seismic waves,and limited precision in event location accuracy.Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures.Moreover,we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array.We found that utilizing a dense seismic array can identify small-scale features within fault zones,aiding in the interpretation of fault zone geometry and material properties. 展开更多
关键词 fault zone structure TOMOGRAPHY fault zone wave seismic activity Anninghe-Xiaojiang fault zone
下载PDF
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China
18
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault Earthquake fault
下载PDF
An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces
19
作者 Sheetal Sharma Kamali Gupta +2 位作者 DeepaliGupta Shalli Rani Gaurav Dhiman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2029-2059,共31页
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness... The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things. 展开更多
关键词 ERROR fault detection techniques sensor faults OUTLIERS Internet of Things
下载PDF
Dynamic Vision Enabled Contactless Cross-Domain Machine Fault Diagnosis With Neuromorphic Computing
20
作者 Xinrui Chen Xiang Li +3 位作者 Shupeng Yu Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期788-790,共3页
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ... Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision. 展开更多
关键词 fault LESS DIAGNOSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部