Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the ...Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by “flower” strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269±5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.展开更多
The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-sl...The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-slip faulting,on the adjustment of geochemical element distribution,are still not clear.In this paper,we select the West Junggar Orogenic Belt(WJOB),NW China,as a case study to test the migration behavior of elements under tectonic dynamics.The WJOB is dominated by NE-trending large-scale sinistral strike-slip faults such as the Darabut Fault,the Mayile Fault,and the Baerluke Fault,which formed during the intracontinental adjustment under N-S compression during ocean-continental conversion in the Late Paleozoic.Geochemical maps of 13 elements,Al,W,Sn,Mo,Cu,Pb,Zn,As,Sb,Hg,Fe,Ni,and Au,are analyzed for the effects of faulting and folding on element distribution at the regional scale.The results show that the element distribution in the WJOB is controlled mainly by two mechanisms during tectonic deformation:first is the material transporting mechanism,where the movement of geological units is consistent with the direction of tectonic movement;second is the diffusion mechanism,especially by tectonic pressure dissolution driven by tectonic dynamics,where the migration of elements is approximately perpendicular or opposite to the direction of tectonic movement.We conclude that the adjustment of element distributions has been determined by the combined actions of transporting and diffusion mechanisms,and that the diffusion mechanism plays an important role in the formation of geochemical Au blocks in the WJOB.展开更多
The European Green Belt developed from the wasteland of the former death strip along the iron curtain over decades to a green life line of biodiversity. It is an ecological network with a unique natural and cultural h...The European Green Belt developed from the wasteland of the former death strip along the iron curtain over decades to a green life line of biodiversity. It is an ecological network with a unique natural and cultural heritage, an emotional human and political history, meaning and transformative power. Due to the former border situation, it is a transnational green infrastructure with biodiversity hotspots in a more and more fragmented, intensively used and degraded European landscape and connects people from 24 European countries and valuable landscapes. But now, nearly 30 years after the peaceful transition in 1989, the gaps in the European Green Belt cover already 50%. These gaps are not protected and are subject to adverse effects, like ongoing landscape fragmentation and ongoing chemo-industrial agriculture. Alarming signals of a new death zone are not only the gaps within the European Green Belt, but generally and closely related the mass extinction of species, climate change, resource depletion, financial and economic crisis, demographic change, emigration, unemployment and/or precarious work worldwide. To save the European Green Belt and life on earth there is a great need ofa 2^nd transformation to a life-sustaining world.展开更多
The era of cultural sharing marks itself mainly in the following three aspects: First, the virtual presence which bridges the world together and further broadens our horizons to observe the world in an even more exten...The era of cultural sharing marks itself mainly in the following three aspects: First, the virtual presence which bridges the world together and further broadens our horizons to observe the world in an even more extensive way. Second, the formerly stable structural relationship between peripheral regions and central regions gradually grows uncertain. Third, the establishment of cyberized roads or the cyberized expansion of roads leads the advance toward a global connectivity where the virtual world closely interacts with the real world. After "the Belt" concept comes into being, the anthropologists must upgrade their research from previously established fixed-point perspective to a more extensive observation over the "Belt" or a wider range, while the concept of "the Road" encourages anthropologists to study the culture of the other half of the world, namely, to read the world history as a whole new picture from a Chinese or eastern point of view. It is necessary for anthropology to break the geological and cultural borders in the real world to extend its antenna to a more extensive range, which will also bring the "otherness" of this field to a more prominent and obvious play. It is inevitable that all human cultures are about to take a core standing in the Belt and Road Initiative.展开更多
With the continuous deepening of the Belt and Road Initiative,the countries involved are increasingly connected in the field of science and technology.Based on the transformation theory of scientific and technological...With the continuous deepening of the Belt and Road Initiative,the countries involved are increasingly connected in the field of science and technology.Based on the transformation theory of scientific and technological(S&T)achievements,this study establishes a theoretical model of transformation factors of S&T achievements under the Belt and Road Initiative.Combined with the data analysis from questionnaire,it is found that in S&T achievements transformation process,there is a significant positive correlation between the innovation factors and the transfer factors,between the transfer factors and the diffusion factors,and between the diffusion factors and the transformation results.These conclusions provide reference for the subsequent S&T achievements transformation activities under the Belt and Road Initiative.Therefore,in the process of promoting the transformation of S&T achievements under the Belt and Road Initiative in the future,innovation factors such as information innovation,service innovation,and cooperative innovation should be fully reflected.Relevant agencies should take the transfer factors of S&T achievements as guidance;promote and apply the results of incubation through diffusion media and diffusion channels.展开更多
There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly eas...There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.展开更多
The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,befor...The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,before and after the ocean–continental conversion in Late Paleozoic.The later on intracontinental deformation,characterized by the development of the NE-trending West Junggar sinistral strike-slip fault system(WJFS)since Late Carboniferous and Early Permian,and the NW-trending Chingiz-Junggar dextral strike-slip fault(CJF)in Mesozoic and Cenozoic,has an important significance for the tectonic evolution of the WJOB and the CAOB.In this paper,we conduct geometric and kinematic analyses of the WJOB,based on field geological survey and structural interpretation of remote sensing image data.Using some piercing points such as truncated plutons and anticlines,an average magnitude of^73 km for the left-lateral strike-slip is calculated for the Darabut Fault,a major fault of the WJFS.Some partial of the displacement should be accommodated by strike-slip fault-related folds developed during the strike-slip faulting.Circular and curved faults,asymmetrical folds,and irregular contribution of ultramafic bodies,implies potential opposite vertical rotation of the Miao’ergou and the Akebasitao batholiths,resulted from the sinistral strike-slipping along the Darabut Fault.Due to conjugate shearing set of the sinistral WJFS and the dextral CJF since Early Mesozoic,superimposed folds formed with N–S convergence in southwestern part of the WJOB.展开更多
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented...Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic.Within this shear belt,strain is highly partitioned into shortening,oblique,extensional and strike-slip structures at multiple scales.Moreover,strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains.In the East Ghadir and Ambaut shear belts,the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated.These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones.The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones.The earlier fabric(S1),is locally recognized in low strain areas and SW-ward thrusts.S2 is associated with a shallowly plunging stretching lineation(L2),and defines^NW-SE major upright macroscopic folds in the East Ghadir shear belt.F2 folds are superimposed by^NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation.F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt.The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones.Dextral ENEstriking shear zones were subsequently active at ca.595 Ma,coeval with sinistral shearing along NW-to NNW-striking shear zones.The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt.Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments.Upright folds,fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning.The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.展开更多
As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reape...As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reaped. However, these achievements were mostly confined to an individual orogenic belt and the study of the mutual relationship among the three orogenic belts was obliged to depend on comparative studies. Different views were produced therefrom. The material composition and structural features of the junction region show that there are several epicontinental and intracontinental transform faults developed in different periods. Restricted by these transform faults, the large-scale lateral movements and, as a consequence, complicated magmatism and tectonic deformation took place in the orogenic belts. According to these features, the authors put forward a three-stage junction and evolution model and point out that there is not a single junction zone traversing from west to east but that the three orogenic belts have been joined progressively by the epicontinental and intracontinental transform faults.展开更多
Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes alon...Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes along strike-slip and intraplate faults of the world. It includes forerunning shocks of magnitude Mw ≥ 5.0 for 21 mainshocks of Mw 7.5 to 8.6 from 1989 to 2020. Much forerunning activity occurred at what are interpreted to be smaller asperities along the peripheries of the rupture zones of great mainshocks at transform faults and subduction zones. Several great asperities as ascertained from forerunning activity agree with the areas of high seism</span><span style="font-family:Verdana;">ic slip as determined by others using geodetic, mapping of surf</span><span style="font-family:Verdana;">ace faulting, and finite-source seismic modeling. The zones of high slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of up to 45 years are attributed to the sizes and spacing of asperities (or lack of). This permits at least some great asperities along transform faults to be mapped decades before they rupture in great shocks. Rupture zones of many great mainshocks along transform faults are bordered either along strike, at depth or regionally by zones of lower plate coupling including either fault creep</span></span><span style="font-family:""> </span><span style="font-family:Verdana;"> forerunning activity, aftershocks and/or slow-slip events. Forerunning activity to transforms in continental areas is more widespread spatially than that adjacent to oceanic transforms. The parts of the San Andreas fault themselves that ruptured in great California earthquakes during 1812, 1857 and 1906 have been very quiet since 1920;moderate to large shocks have been concentrated on their peripheries. The intraplate shocks studied, however, exhibited few if any forerunning events, which is attributed to the short period of time studied compared to their repeat times. The detection of forerunning and precursory activities for various time scales should be sought on the peripheries of great asperities and not just along the major faults themselves. This paper compliments that on decadal forerunning activity to great and giant earthquakes along subduction zones.展开更多
Eastern Hunan-western Jiangxi, the main distribution domain of the Luoxiao MountainRange, is one of the key districts of the Circum-Pacific tectonically active belt in China, in whichNNE-trending en echelon strike-sli...Eastern Hunan-western Jiangxi, the main distribution domain of the Luoxiao MountainRange, is one of the key districts of the Circum-Pacific tectonically active belt in China, in whichNNE-trending en echelon strike-slip faulting since Cenozoic time has obviously controlled thefundamental framework of the modern land forms. Based on the study of tectonic evolution and ac-tive strike-slip faults, this paper discusses the forms, types and combinations of the modern tec-tonic land forms in this region.展开更多
文摘Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by “flower” strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269±5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.
基金Financial support from the National Key Research and Development Program of China(the DREAM-Deep Resource Exploration and Advanced Mininggrant No.2018YFC0603701)the China Geological Survey(grant Nos.DD20160083 and DD20190011)。
文摘The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-slip faulting,on the adjustment of geochemical element distribution,are still not clear.In this paper,we select the West Junggar Orogenic Belt(WJOB),NW China,as a case study to test the migration behavior of elements under tectonic dynamics.The WJOB is dominated by NE-trending large-scale sinistral strike-slip faults such as the Darabut Fault,the Mayile Fault,and the Baerluke Fault,which formed during the intracontinental adjustment under N-S compression during ocean-continental conversion in the Late Paleozoic.Geochemical maps of 13 elements,Al,W,Sn,Mo,Cu,Pb,Zn,As,Sb,Hg,Fe,Ni,and Au,are analyzed for the effects of faulting and folding on element distribution at the regional scale.The results show that the element distribution in the WJOB is controlled mainly by two mechanisms during tectonic deformation:first is the material transporting mechanism,where the movement of geological units is consistent with the direction of tectonic movement;second is the diffusion mechanism,especially by tectonic pressure dissolution driven by tectonic dynamics,where the migration of elements is approximately perpendicular or opposite to the direction of tectonic movement.We conclude that the adjustment of element distributions has been determined by the combined actions of transporting and diffusion mechanisms,and that the diffusion mechanism plays an important role in the formation of geochemical Au blocks in the WJOB.
文摘The European Green Belt developed from the wasteland of the former death strip along the iron curtain over decades to a green life line of biodiversity. It is an ecological network with a unique natural and cultural heritage, an emotional human and political history, meaning and transformative power. Due to the former border situation, it is a transnational green infrastructure with biodiversity hotspots in a more and more fragmented, intensively used and degraded European landscape and connects people from 24 European countries and valuable landscapes. But now, nearly 30 years after the peaceful transition in 1989, the gaps in the European Green Belt cover already 50%. These gaps are not protected and are subject to adverse effects, like ongoing landscape fragmentation and ongoing chemo-industrial agriculture. Alarming signals of a new death zone are not only the gaps within the European Green Belt, but generally and closely related the mass extinction of species, climate change, resource depletion, financial and economic crisis, demographic change, emigration, unemployment and/or precarious work worldwide. To save the European Green Belt and life on earth there is a great need ofa 2^nd transformation to a life-sustaining world.
基金Initial achievement for the participation of ethnic regions in the strategic research of the Belt and Road Initiative under the background of cultural transformation(2016-GMA-004)a research project on ethnic issues under the State Ethnic Affairs Commission(2016)
文摘The era of cultural sharing marks itself mainly in the following three aspects: First, the virtual presence which bridges the world together and further broadens our horizons to observe the world in an even more extensive way. Second, the formerly stable structural relationship between peripheral regions and central regions gradually grows uncertain. Third, the establishment of cyberized roads or the cyberized expansion of roads leads the advance toward a global connectivity where the virtual world closely interacts with the real world. After "the Belt" concept comes into being, the anthropologists must upgrade their research from previously established fixed-point perspective to a more extensive observation over the "Belt" or a wider range, while the concept of "the Road" encourages anthropologists to study the culture of the other half of the world, namely, to read the world history as a whole new picture from a Chinese or eastern point of view. It is necessary for anthropology to break the geological and cultural borders in the real world to extend its antenna to a more extensive range, which will also bring the "otherness" of this field to a more prominent and obvious play. It is inevitable that all human cultures are about to take a core standing in the Belt and Road Initiative.
基金Shanghai Science and Technology Commission's 2019"Science and Technology Innovation Action Plan"Project Haiju the Belt and Road Innovation and Technology Incubation Platform,China(No.19640770200)Fundamental Research Funds for the Central Universities,ChinaShanghai Pujiang Program,China(No.2020PJC002)。
文摘With the continuous deepening of the Belt and Road Initiative,the countries involved are increasingly connected in the field of science and technology.Based on the transformation theory of scientific and technological(S&T)achievements,this study establishes a theoretical model of transformation factors of S&T achievements under the Belt and Road Initiative.Combined with the data analysis from questionnaire,it is found that in S&T achievements transformation process,there is a significant positive correlation between the innovation factors and the transfer factors,between the transfer factors and the diffusion factors,and between the diffusion factors and the transformation results.These conclusions provide reference for the subsequent S&T achievements transformation activities under the Belt and Road Initiative.Therefore,in the process of promoting the transformation of S&T achievements under the Belt and Road Initiative in the future,innovation factors such as information innovation,service innovation,and cooperative innovation should be fully reflected.Relevant agencies should take the transfer factors of S&T achievements as guidance;promote and apply the results of incubation through diffusion media and diffusion channels.
文摘There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.
基金supported by the China Geological Survey (Grant Nos. DD20160083, DD20160344-05)the Chinese Academy of Geological Sciences Research Fund (Grant No. CAGS-YWF201706)
文摘The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,before and after the ocean–continental conversion in Late Paleozoic.The later on intracontinental deformation,characterized by the development of the NE-trending West Junggar sinistral strike-slip fault system(WJFS)since Late Carboniferous and Early Permian,and the NW-trending Chingiz-Junggar dextral strike-slip fault(CJF)in Mesozoic and Cenozoic,has an important significance for the tectonic evolution of the WJOB and the CAOB.In this paper,we conduct geometric and kinematic analyses of the WJOB,based on field geological survey and structural interpretation of remote sensing image data.Using some piercing points such as truncated plutons and anticlines,an average magnitude of^73 km for the left-lateral strike-slip is calculated for the Darabut Fault,a major fault of the WJFS.Some partial of the displacement should be accommodated by strike-slip fault-related folds developed during the strike-slip faulting.Circular and curved faults,asymmetrical folds,and irregular contribution of ultramafic bodies,implies potential opposite vertical rotation of the Miao’ergou and the Akebasitao batholiths,resulted from the sinistral strike-slipping along the Darabut Fault.Due to conjugate shearing set of the sinistral WJFS and the dextral CJF since Early Mesozoic,superimposed folds formed with N–S convergence in southwestern part of the WJOB.
文摘Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic.Within this shear belt,strain is highly partitioned into shortening,oblique,extensional and strike-slip structures at multiple scales.Moreover,strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains.In the East Ghadir and Ambaut shear belts,the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated.These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones.The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones.The earlier fabric(S1),is locally recognized in low strain areas and SW-ward thrusts.S2 is associated with a shallowly plunging stretching lineation(L2),and defines^NW-SE major upright macroscopic folds in the East Ghadir shear belt.F2 folds are superimposed by^NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation.F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt.The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones.Dextral ENEstriking shear zones were subsequently active at ca.595 Ma,coeval with sinistral shearing along NW-to NNW-striking shear zones.The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt.Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments.Upright folds,fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning.The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.
文摘As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reaped. However, these achievements were mostly confined to an individual orogenic belt and the study of the mutual relationship among the three orogenic belts was obliged to depend on comparative studies. Different views were produced therefrom. The material composition and structural features of the junction region show that there are several epicontinental and intracontinental transform faults developed in different periods. Restricted by these transform faults, the large-scale lateral movements and, as a consequence, complicated magmatism and tectonic deformation took place in the orogenic belts. According to these features, the authors put forward a three-stage junction and evolution model and point out that there is not a single junction zone traversing from west to east but that the three orogenic belts have been joined progressively by the epicontinental and intracontinental transform faults.
文摘Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes along strike-slip and intraplate faults of the world. It includes forerunning shocks of magnitude Mw ≥ 5.0 for 21 mainshocks of Mw 7.5 to 8.6 from 1989 to 2020. Much forerunning activity occurred at what are interpreted to be smaller asperities along the peripheries of the rupture zones of great mainshocks at transform faults and subduction zones. Several great asperities as ascertained from forerunning activity agree with the areas of high seism</span><span style="font-family:Verdana;">ic slip as determined by others using geodetic, mapping of surf</span><span style="font-family:Verdana;">ace faulting, and finite-source seismic modeling. The zones of high slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of up to 45 years are attributed to the sizes and spacing of asperities (or lack of). This permits at least some great asperities along transform faults to be mapped decades before they rupture in great shocks. Rupture zones of many great mainshocks along transform faults are bordered either along strike, at depth or regionally by zones of lower plate coupling including either fault creep</span></span><span style="font-family:""> </span><span style="font-family:Verdana;"> forerunning activity, aftershocks and/or slow-slip events. Forerunning activity to transforms in continental areas is more widespread spatially than that adjacent to oceanic transforms. The parts of the San Andreas fault themselves that ruptured in great California earthquakes during 1812, 1857 and 1906 have been very quiet since 1920;moderate to large shocks have been concentrated on their peripheries. The intraplate shocks studied, however, exhibited few if any forerunning events, which is attributed to the short period of time studied compared to their repeat times. The detection of forerunning and precursory activities for various time scales should be sought on the peripheries of great asperities and not just along the major faults themselves. This paper compliments that on decadal forerunning activity to great and giant earthquakes along subduction zones.
文摘Eastern Hunan-western Jiangxi, the main distribution domain of the Luoxiao MountainRange, is one of the key districts of the Circum-Pacific tectonically active belt in China, in whichNNE-trending en echelon strike-slip faulting since Cenozoic time has obviously controlled thefundamental framework of the modern land forms. Based on the study of tectonic evolution and ac-tive strike-slip faults, this paper discusses the forms, types and combinations of the modern tec-tonic land forms in this region.