A methodology has been developed to generate a non-uniform/distoited inlet flow field to test a gas turbine engine in ground test facilities.The distorted flow field is generated by positioning radial and circumferent...A methodology has been developed to generate a non-uniform/distoited inlet flow field to test a gas turbine engine in ground test facilities.The distorted flow field is generated by positioning radial and circumferential strips of varying widths upstream of the Aerodynamic Interface Plane.The interacting wakes from these strips are used to generate a given target flow field.The approximate superposition of these wakes is investigated and used to construct the strip arrangement which is subsequently validated by computing the flow field by solving the Navier-Stokes equations.The strip geometry designed using the present methodology is able to produce the target Mach number distribution with a root-mean-square error of 5.06%.展开更多
文摘A methodology has been developed to generate a non-uniform/distoited inlet flow field to test a gas turbine engine in ground test facilities.The distorted flow field is generated by positioning radial and circumferential strips of varying widths upstream of the Aerodynamic Interface Plane.The interacting wakes from these strips are used to generate a given target flow field.The approximate superposition of these wakes is investigated and used to construct the strip arrangement which is subsequently validated by computing the flow field by solving the Navier-Stokes equations.The strip geometry designed using the present methodology is able to produce the target Mach number distribution with a root-mean-square error of 5.06%.