In this paper,the mechanics of strip edge cracks and its propagation has been studied,and the effects of strip edge drop and stress intensity factor(SIF) on edge crack defections during cold rolling of thin strip have...In this paper,the mechanics of strip edge cracks and its propagation has been studied,and the effects of strip edge drop and stress intensity factor(SIF) on edge crack defections during cold rolling of thin strip have been discussed.An experimental investigation was presented into the effect of strip edge drop on edge cracks during cold rolling of thin strip.The edge crack increases significantly due to more inhomogeneous deformation and work hardening at the strip edge.The effective stress intensity factor range is important as it represents the major physical cause of the crack propagation.The efficiency and reliability of the SIF analytical model has been demonstrated in the study.The proposed method for predicting strip edge crack is helpful in producing defect-free products and providing an understanding of the mechanics of edge crack propagation in cold rolling of thin strip.展开更多
Temperature evolution of a working piece during hot rolling has a significant influence on the microstmcture and final mechanical properties of the material. As the measurement technologies improve, on-line measuremen...Temperature evolution of a working piece during hot rolling has a significant influence on the microstmcture and final mechanical properties of the material. As the measurement technologies improve, on-line measurement of the temperature across the strip width has become accessible, and thus monitoring and control of the transversal temperature distribution during hot rolling can be realized. The scanning of the temperature across the strip width can help us to understand the state of the temperature variation at the strip edges and as a result help us improve the temperature homogeneity of the strip. In this paper, reaearch on temperature distribution along the strip width is reviewed first, and then the mechanism of the scanning measuring devices is introduced. With the temperature scanning measurement data taken from the finishing mill entry point and the down coiler entry point, the temperature distribution at the strip edges is analyzed. It is pointed out that the roughing process is the main contributor to the temperature inhomogeneity. Furthermore,the contribution of the edger heater to the temperature homogeneity is investigated.展开更多
文摘In this paper,the mechanics of strip edge cracks and its propagation has been studied,and the effects of strip edge drop and stress intensity factor(SIF) on edge crack defections during cold rolling of thin strip have been discussed.An experimental investigation was presented into the effect of strip edge drop on edge cracks during cold rolling of thin strip.The edge crack increases significantly due to more inhomogeneous deformation and work hardening at the strip edge.The effective stress intensity factor range is important as it represents the major physical cause of the crack propagation.The efficiency and reliability of the SIF analytical model has been demonstrated in the study.The proposed method for predicting strip edge crack is helpful in producing defect-free products and providing an understanding of the mechanics of edge crack propagation in cold rolling of thin strip.
文摘Temperature evolution of a working piece during hot rolling has a significant influence on the microstmcture and final mechanical properties of the material. As the measurement technologies improve, on-line measurement of the temperature across the strip width has become accessible, and thus monitoring and control of the transversal temperature distribution during hot rolling can be realized. The scanning of the temperature across the strip width can help us to understand the state of the temperature variation at the strip edges and as a result help us improve the temperature homogeneity of the strip. In this paper, reaearch on temperature distribution along the strip width is reviewed first, and then the mechanism of the scanning measuring devices is introduced. With the temperature scanning measurement data taken from the finishing mill entry point and the down coiler entry point, the temperature distribution at the strip edges is analyzed. It is pointed out that the roughing process is the main contributor to the temperature inhomogeneity. Furthermore,the contribution of the edger heater to the temperature homogeneity is investigated.