The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal...The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal was analyzed by the optical microscopy, scanning electron microscope and energy dispersive spectroscopy. The corrosion resistance studies of strip cladding metals were carried out in 10% oxalic acid electrolytic etching test. The results showed that the cladding metal obtained by ESC presented low content of C, high content of Cr and enough alloying element of Ni in the chemical composition. The transition zone of ESC with small width was almost parallel with the base metal, leading to a lower dilution. There are three types of solidification modes ( A→AF→FA ) occurred in the ESC metal due to the decrease of cooling rate and degree of dilution from the transition zone to the top of ESC metal. As a result, the microstructure of ESC metal exhibited mainly austenite with a small amount of ferrite, contributing to achievement of better corrosion resistance.展开更多
基金sponsored by National Natural Science Foundation of China(Grant No.51101050)Fundamental Research Funds for the Central Universities(Grant No.2015B22614)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20141156)
文摘The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal was analyzed by the optical microscopy, scanning electron microscope and energy dispersive spectroscopy. The corrosion resistance studies of strip cladding metals were carried out in 10% oxalic acid electrolytic etching test. The results showed that the cladding metal obtained by ESC presented low content of C, high content of Cr and enough alloying element of Ni in the chemical composition. The transition zone of ESC with small width was almost parallel with the base metal, leading to a lower dilution. There are three types of solidification modes ( A→AF→FA ) occurred in the ESC metal due to the decrease of cooling rate and degree of dilution from the transition zone to the top of ESC metal. As a result, the microstructure of ESC metal exhibited mainly austenite with a small amount of ferrite, contributing to achievement of better corrosion resistance.