Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimiza...Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimization algorithm-particle swarm optimization (PSO) is adopted. The algorithm is combined with the BP rapid training algorithm, and then, a kind of new neural network (NN) called PSO-BP NN is established. With the advantages of global optimization ability and the rapid constringency of the BP rapid training algorithm, the new algorithm fully shows the ability of nonlinear approach of multilayer feedforward network, improves the performance of NN, and provides a favorable basis for further online application of a comprehensive model.展开更多
基金Natural Science Foundation of Anhui Provincial Education Depart ment of China (2006KJ080A)
文摘Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimization algorithm-particle swarm optimization (PSO) is adopted. The algorithm is combined with the BP rapid training algorithm, and then, a kind of new neural network (NN) called PSO-BP NN is established. With the advantages of global optimization ability and the rapid constringency of the BP rapid training algorithm, the new algorithm fully shows the ability of nonlinear approach of multilayer feedforward network, improves the performance of NN, and provides a favorable basis for further online application of a comprehensive model.