Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathoge...Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.展开更多
Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and ...Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and the contents of iron(Fe),zinc(Zn),and seed gluten proteins.Forty-two of the accessions were classified as resistant to stripe rust,while the other four accessions were classified as susceptible to stripe rust in four environments.The average HD of Ae.umbellulata was significantly longer than that of three common wheat cultivars(180.9 d vs.137.0 d),with the exception of PI226500(138.9 d).The Ae.umbellulata accessions also showed high variability in Fe(69.74-348.09 mg kg^(-1))and Zn(49.83-101.65 mg kg^(-1))contents.Three accessions(viz.,PI542362,PI542363,and PI554399)showed relatively higher Fe(230.96-348.09 mg kg^(-1))and Zn(92.46-101.65 mg kg^(-1))contents than the others.The Fe content of Ae.umbellulata was similar to those of Ae.comosa and Ae.markgrafii but higher than those of Ae.tauschii and common wheat.Aegilops umbellulata showed a higher Zn content than Ae.tauschii,Ae.comosa,and common wheat,but a lower content than Ae.markgrafii.Furthermore,Ae.umbellulata had the highest proportion of γ-gliadin among all the species investigated(Ae.umbellulata vs.other species=mean 72.11%vs.49.37%;range:55.33-86.99%vs.29.60-67.91%).These results demonstrated that Ae.umbellulata exhibits great diversity in the investigated traits,so it can provide a potential gene pool for the genetic improvement of these traits in wheat.展开更多
Wheat stripe rust has become the most dangerous disease which threaten safe yield of wheat in Sichuan Province. It is meaningful to provide technique support for integrated disease control by exploring the effective c...Wheat stripe rust has become the most dangerous disease which threaten safe yield of wheat in Sichuan Province. It is meaningful to provide technique support for integrated disease control by exploring the effective control measures of wheat stripe rust. Wheat stripe rust dynamic developments of all-planting and mixed-planting have been systematically investigated in this study by taking different mixed-planting combinations among 6 wheat varieties with different resistance levels. The results of this experiment show that the mixed-plantings of 4 and 6 wheat varieties can delay the occurance of wheat stripe rust,slow the speed of disease and decline the damage of disease as well as stabilize yield of wheats.展开更多
Yunmai52, developed by crossing with common wheat-Haynaldia villosa6AL/6VS translocation line 92R149 as a resistant parent in 1992, was a common wheat cultivar approved and released in 2007 in Yunnan Province, China, ...Yunmai52, developed by crossing with common wheat-Haynaldia villosa6AL/6VS translocation line 92R149 as a resistant parent in 1992, was a common wheat cultivar approved and released in 2007 in Yunnan Province, China, which is characterized by high resistance to powdery mildew and stripe rust. In this study,an F_2 population derived from a cross K78S/Yunmai52 was constructed to investigate the resistance genes, where K78 S is a wheat male sterile line susceptible to powdery mildew and stripe rust. Phenotypic identification of the parents, F_1 and F_2 populations and chi-square analyses showed that F_1 population was immune to stripe rust and powdery mildew; the segregation ratio of resistance and susceptibility to powdery mildew(χ~2=1.10χ~2_(1,0.05)=3.84) and stripe rust(χ~2=0.15χ~2_(1,0.05)=3.84) fit to a 3:1 ratio in F_2 population, indicating that Yunmai52 harbors a dominant stripe rust resistance gene and a dominant powdery mildew resistance gene. The individuals were further detected with a marker co-segregated with Pm21(SCAR_(1400)) and two markers closely linked with Yr26(XWe173 and Xbarc181). The results showed that polymorphic bands could be amplified between the parents and between resistance and susceptibility gene pools at the same locus. Randomly 96 individuals of F_2 population were selected for verification. The results showed that the phenotype was significantly correlated with the genotype. The detection accuracy of markers SCAR_(1400), XWe173 and Xbarc181 was 100%, 97.91% and 92.70%, respectively.Yunmai52 harbored powdery mildew resistance gene Pm21 and stripe rust resistance gene Yr26, which were both derived from 6AL/6VS translocation line 92R149.In addition, the results also demonstrate that Pm21 and Yr26 are two genes conferring durable resistance to powdery mildew and stripe rust in wheat.展开更多
On basis of the research result of stripe rust for 16 years since 1999,the epidemic characteristics and trend of stripe rust in the city were determined.Namely,the earlier the initial stage appeared,the heavier the di...On basis of the research result of stripe rust for 16 years since 1999,the epidemic characteristics and trend of stripe rust in the city were determined.Namely,the earlier the initial stage appeared,the heavier the disease would be.Furthermore,stripe rust has two introduction infection peaks,of which the first peak plays a key role.In farmlands,there are one to three epidemic peaks,and the infection area of the first peak plays the key role on the epidemic area of that year.In addition,the accumulated areas of late January was in significantly positive correlation with annually total area,with a correlation coefficient of 0.769 2.In recent 16 years,the frequency of severe stripe rust was as high as 81.25% which was 50% higher than that before 1995.The slight stripe rust became just in 2013,with a frequency of 6.3%,which indicated that the city has become a region hit by severe stripe rust.The internal reason is the reduction or loss of wheat variety's resistance to tripe rust for a new physiological race of rust is becoming pathogenic stronger and be the major race.Big fluctuation of temperatures in warm winter and spring,foggy and dew days slants much would be the external reason.展开更多
[Objective] The study aimed to screen wheat cultivars with high temperature resistance to stripe rust from the wheat resources in Huanghuai growth area. [Method] Seedlings of 165 wheat cultivars from Huanghuai growth ...[Objective] The study aimed to screen wheat cultivars with high temperature resistance to stripe rust from the wheat resources in Huanghuai growth area. [Method] Seedlings of 165 wheat cultivars from Huanghuai growth area were identified by wheat stripe rust under high temperature; then the wheat cultivars showing stripe rust at seedling stage were further used to identify the same resistance in field. [Results] 13 cultivars were proved to be stripe rust resistant under high temperature, and the expression stages of stripe rust in the 13 cultivars were revealed. The field identification results confirmed the identification results at seedling stage via inoculation of mixed stripe rust of physiological races. The stripe resistances of wheat cultivars were also proved to be non-race-specific. [Conclusion] Wheat resources in Huanghuai growth area are abundant in wheat cultivars with high temperature resistance to stripe rust.展开更多
[Objective] The aim of this study is to establish the model for forecasting wheat stripe rust occurrence condition using meteorological factors. [Method] Based on the data of wheat stripe rust occurrence degrees in it...[Objective] The aim of this study is to establish the model for forecasting wheat stripe rust occurrence condition using meteorological factors. [Method] Based on the data of wheat stripe rust occurrence degrees in its past prevalent years and the meteorological data at corresponding periods, the methods of grey correlation analysis and fuzzy mathematics were employed to establish the forecast model for four pathogenesis indices according to the time sequence before winter, Early March, Early April and Middle May. Thus, the criterion for forecasting the occurrence degree of wheat stripe rust was obtained based on the distribution method of arithmetic progression. [Result] The model corresponding to meteorological conditions for forecasting wheat stripe rust was successfully established. According to the verification, the forecasting results before winter and in Early Mar. were more severer than the real occurrence condition, while the forecasting results in Early Apr. and Middle May were basically consistent with real values. [Conclusion] The results of the present study may avail the control of wheat stripe rust in Henan Province.展开更多
Pathogenesis-related proteins (PRs) play many important roles in plant defense response against pathogen attack. To better understand the molecular mechanism of PR genes involved in wheat adult plant resistance (AP...Pathogenesis-related proteins (PRs) play many important roles in plant defense response against pathogen attack. To better understand the molecular mechanism of PR genes involved in wheat adult plant resistance (APR) to stripe rust, based on a differentially expressed transcribed derived fragment (TDF), a novel PR gene from wheat cv. Xingzi 9104 infected by the Puccinia striiformis Westend f. sp. tritici Erikss. pathotype CY32, which was highly similar to the maize ZmPRIO gene and designated as TaPRIO, was identified using in silico cloning and RT-PCR method. This novel TaPRIO gene was predicted to encode a 160-amino acid protein with a deduced molecular weight of 17.06 kDa and an isoelectronic point (pI) of 5.19. An amino acid sequence analysis of TaPR10 demonstrated the presence of a typical conserved domain of pathogenesis related protein Bet v I family. Multiple alignment analysis based on the amino acids encoded by 10 different PRIO genes from maize (Zea mays), rice (Oryza sativa), broomcorn (Sorghum bicolor), and wheat (Triticum aestivum) indicated that PR proteins of class 10 was conserved among the 4 plant species with about 80% similarity. DNA sequence of TaPRIO suggested the presence of one 84-bp intron with the splicing sites of GT-AT bi-nucleotide sequence between 188 and 271 bp. Using a real-time quantitative RT-PCR (qRT-PCR), expression profiles of TaPRIO revealed that at the adult-plant stage, TaPRIO transcript was up-regulated as early as 12 h post-inoculation (hpi), with the occurrence of maximum induction at 24 hpi. At the seedling stage, TaPRIO was also slightly induced 18 hpi. However, the transcript amount was relatively lower than that of the adult-plant stage. Taken together, these results suggest that TaPRIO may participate in wheat defense response of APR to stripe rust.展开更多
Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of...Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of rust pathogen have led to serious crisis of resistance loss in widely planted varieties. This has quickened the search for new resistance resources. Molecular marker could facilitate the identification of the location of novel genes. A line A-3 with high resistance (immune) to currently epidemic yellow rust races (CY29, 31, 32) was screened out in offspring of Triticum aestivura x Thinopyrum ponticum. Segregation in F2 and BC1 populations indicated that the resistance was controlled by two independent genes: one dominant and one recessive. SSR markers were employed to map the two resistant genes in the F2 and BC1 populations. A marker WMC477-167bp located on 2BS was linked to the dominant gene with genetic distance of 0.4 cM. Another marker WMC364-2os bp located on 7BS was linked to the recessive-resistant gene with genetic distance of 5.8 cM. The two genes identified in this paper might be two novel stripe rust resistant genes, which were temporarily designated as YrTpl and YrTp2, respectively. The tightly linking markers facilitate transfer of the two resistant genes into the new varieties to control epidemic of yellow rust.展开更多
Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f.sp.tritici prevalent in China.To elucidate the genetic basis ...Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f.sp.tritici prevalent in China.To elucidate the genetic basis of the resistance,the segregating populations were developed from the cross between V3 and susceptible genotype Mingxian 169,seedlings of the parents and F 2 progeny were tested with six prevalent pathotypes,including CYR29,CYR31,CYR32-6,CYR33,Sun11-4,and Sun11-11,F 1 plants and F 3 lines were also inoculated with Sun11-11 to confirm the result further.The genetic studied results showed that the resistance of V3 against CYR29 was conferred by two dominant genes,independently,one dominant gene and one recessive gene conferring independently or a single dominant gene to confer resistance to CYR31,two complementary dominant genes conferring resistance to both CYR32-6 and Sun11-4,two independently dominant genes or three dominant genes(two of the genes show cumulative effect) conferring resistance to CYR33,a single dominant gene for resistance to Sun11-11.Resistance gene analog polymorphism(RGAP) and simple-sequence repeat(SSR) techniques were used to identify molecular markers linked to the single dominant gene(temporarily designated as YrV3) for resistance to Sun11-11.A linkage map of 2 RGAP and 7 SSR markers was constructed for the dominant gene using data from 221 F 2 plants and their derived F 2:3 lines tested with Sun11-11 in the greenhouse.Amplification of the complete set of nulli-tetrasomic lines of Chinese Spring with a RGAP marker RG1 mapped the gene on the chromosome 1B,and then the linked 7 SSR markers located this gene on the long arm of chromosome 1B.The linkage map spanned a genetic distance of 25.0 cM,the SSR markers Xgwm124 and Xcfa2147 closely linked to YrV3 with genetic distances of 3.0 and 3.8 cM,respectively.Based on the linkage map,it concluded that the resistance gene YrV3 was located on chromosome arm 1BL.Given chromosomal location,the reaction patterns and pedigree analysis,YrV3 should be a novel gene for resistance to stripe rust in wheat.These closely linked markers should be useful in stacking genes from different sources for wheat breeding and diversification of resistance genes against stripe rust.展开更多
The wheat canopy reflectance spectrum is affected by many internal and external factors such as diseases and growth stage. Separating the effects of disease stress on the crop from the observed mixed signals is crucia...The wheat canopy reflectance spectrum is affected by many internal and external factors such as diseases and growth stage. Separating the effects of disease stress on the crop from the observed mixed signals is crucial for increasing the precision of remote sensing monitoring of wheat stripe rust. The canopy spectrum of winter wheat infected by stripe rust was processed with the difference-in-differences(DID) algorithm used in econometrics. The monitoring accuracies of wheat stripe rust before and after processing with the DID algorithm were compared in the presence of various external factors, disease severity, and several simulated satellite sensors. The correlation between the normalized difference vegetation index processed by the DID algorithm(NDVI-DID) and the disease severity level(SL) increased in comparison with the NDVI before processing. The increase in precision in the natural disease area in the field in the presence of large differences in growth stage, growth, planting, and management of the crop was greater than that in the controlled experiment. For low disease levels(SL < 20%), the R2 of the regression of NDVI-DIDon SL was 38.8% higher than that of the NDVI and the root mean square error(RMSE) was reduced by 11.1%. The increase in precision was greater than that for the severe level(SL > 40%).According to the measured hyperspectral data, the spectral reflectance of three satellite sensor levels was simulated. The wide-band NDVI was calculated. Compared with the wide-band NDVI and vegetation indexes(VI) before DID processing, there were increases in the correlation between SL and the various types of VIS-DID, as well as in the correlation between SL and NDVI-DID. It is feasible to apply the DID algorithm to multispectral satellite data and diverse types of VISfor monitoring wheat stripe rust. Our results improve the quantification of independent effects of stripe rust infection on canopy reflectance spectrum,increase the precision of remote sensing monitoring of wheat stripe rust, and provide a reference for remote sensing monitoring of other crop diseases.展开更多
Stripe rust caused by Puccinia striiformis f. sp. tritici is an important wheat disease worldwide that is greatly influenced by environmental conditions. Ultraviolet B(UV-B) radiation is one important environmental fa...Stripe rust caused by Puccinia striiformis f. sp. tritici is an important wheat disease worldwide that is greatly influenced by environmental conditions. Ultraviolet B(UV-B) radiation is one important environmental factor affecting the occurrence and epidemiology of wheat stripe rust. Investigating UV-B radiation effects on the epidemiology of stripe rust may be conducive to monitoring and predicting this disease. In this study, wheat seedlings were exposed to UV-B radiation during different periods under laboratory conditions and radiation effects on epidemiological components of wheat stripe rust were investigated. Results showed that incubation period was shortened, and the infection efficiency, sporulation quantity and disease index increased when UV-B radiation was performed only pre-inoculation. When the UV-B radiation was performed only postinoculation or both pre-and post-inoculation, the incubation period was prolonged, and the infection efficiency, sporulation quantity and disease index were reduced. When healthy wheat seedlings were inoculated using urediospores collected from wheat leaves irradiated by UV-B only post-inoculation or both pre-and post-inoculation, infection efficiency, sporulation quantity and disease index were also reduced. However, in the latter, the disease incubation period did not differ under varying UV-B radiation intensities compared to that when wheat leaves were not treated with UV-B radiation. Overall, the effects of direct exposure of wheat plants to UV-B radiation with different intensities in different periods on epidemiological components of wheat stripe rust were systematically explored, and the results suggest that the effects of UV-B radiation increased gradually with the increase of UV-B radiation intensity. This information provides a basis for monitoring and predicting this disease as well as for conducting further studies on pathogen virulence variation.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the major diseases of wheat in China. In order to asses the resistance levels and existing Yr genes among 59 wheat cultivars (lines) from the Pac...Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the major diseases of wheat in China. In order to asses the resistance levels and existing Yr genes among 59 wheat cultivars (lines) from the Pacific Northwest (PNW) of the United States, to provide resistance resources for genetic improvement of wheat stripe rust resistance in China, 59 wheat cultivars (lines) from PNW of the United States were infected by 3 mixed races of predominant Chinese stripe rust races CRY31, CRY32, and CRY33 to evaluate their resistance at seedling and adult plant stages, and screened with molecular markers tightly linked to currently effective all-stage resistance genes YrlO, Yrl5 and adult plant resistance genes Yrl8, Yr39. Of 59 American cultivars (lines), five cultivars (lines), Expresso, 02W50076, ACS52610, WA008012, and WA00801833, had all-stage resistance, showing resistance to mixed races of CRY31, CRY32, and CRY33 at both seedling and adult plant stages. 33 cultivars (lines) had adult plant resistance, only showing resistance to stripe rust at adult stage. Based on the molecular screening, none of the 59 PNW cultivars (lines) had the polymorphic bands of linked markers to YrlO. There were 12, 33 and 29 cultivars (lines) which bad polymorphic bands of linked markers to Yr15, Yr18 and Yr39, accounting for 20, 55 and 49% of the 59 PNW cultivars (lines), respectively. All these results suggested that Yr15, Yr18 and Yr39 were widespread among PNW cultivars (cultivars) and could be utilized in Chinese wheat stripe rust resistance breeding.展开更多
Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycni...Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.展开更多
In order to realize monitoring and early warning and comprehensive management of wheat stripe rust and to reduce its occurrence in Nanchong City, the occurrence and epidemic regularity of wheat stripe rust in Nanchong...In order to realize monitoring and early warning and comprehensive management of wheat stripe rust and to reduce its occurrence in Nanchong City, the occurrence and epidemic regularity of wheat stripe rust in Nanchong was studied by system monitoring and general survey, resistance identification, physiological race monitoring and meteorological data analysis. The initial occurrence location and spreading pathway of Puccinia striiformis f. sp. tritici (Pst) were first verified; there were two infection peaks of wheat stripe rust in Nanchong and one to three epidemic peaks in fields, in which the occurrence area of the first epidemic peak played a pivotal role in disease prevalence in that year; the cumulative occurrence area in late January was positively correlated with annual occurrence area, with the correlation coefficient of 0.769 ; the prediction model for infected field rate, diseased plant rate and annual occurrence area was established. The internal reason for heavy occurrence and prevalence of wheat stripe rust in Nanchong was the decline or loss of wheat resistance against stripe rust, as well as the appearance of physiological races of Pst, which later became dominant races. Large fluctuation of temperature in warm winter and spring and more fog and dew days were external reasons responsible for prevalence of stripe rust. From 2002 to 2014 ,the accuracy rate of short-term prediction of wheat stripe rust reached 100%, while that of me- dium-term and long-term prediction reached over 98% and 95%, respectively, 5% -15% higher than that of the years before 1998.展开更多
The development and deployment of diverse resistance sources in new wheat cultivars underpin the durable control of stripe rust.In the present study,two loci for adult plant resistance(APR),QYr SM155.1 and QYr SM155.2...The development and deployment of diverse resistance sources in new wheat cultivars underpin the durable control of stripe rust.In the present study,two loci for adult plant resistance(APR),QYr SM155.1 and QYr SM155.2,were identified in the Chinese wheat breeding line Shaanmai 155.QYr SM155.1 was mapped to a 3.0-c M interval between the single-nucleotide polymorphism(SNP)markers AX-109583610 and AX-110907562 on chromosome arm 2 BL.QYr SM155.2 was mapped to a 2.1-c M interval flanked by the SNP markers AX-110378556 and AX-86173526 on chromosome arm 7 AS.A genome-wide association study was used to identify markers associated with APR in a panel of 411 spring wheat lines.Thirteen and 11 SNPs were significantly associated with QYr SM155.1 and QYr SM155.2,respectively,corresponding to physical intervals of 653.75–655.52 Mb on 2 BL and 81.63–83.93 Mb on7 AS.To characterize the haplotype variation and the distribution of these QTL,haplotype analysis was performed based on these SNPs in an independent panel of 1101 worldwide wheat accessions.Three major haplotypes(2 B_h1,2 B_h2,and 2 B_h3)for QYr SM155.1 and four major haplotypes(7 A_h1,7 A_h2,7 A_h3,and 7 A_h4)for QYr SM155.2 were identified.Accessions individually harboring QYr SM155.1_h1 and QYr SM155.2_h1 haplotypes and their combination displayed resistance.Additional assays of 1306 current Chinese cultivars and breeding lines using markers flanking QYr SM155.1 and QYr SM155.2 indicated that the resistance haplotypes of the two QTL were present in respectively 1.45%and 14.16%of lines.Increasing resistance haplotype frequencies at these two loci using marker-assisted selection should benefit wheat production in China.展开更多
Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics ...Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics of wheat resistance to this disease, but few on avirulence of the pathogen due mainly to the nature of obligate biotrophism and the lack of systems for studying its genetics and molecular manipulations. To overcome these limitations, a natural Pst population comprising 352 isolates representative of a diverse virulence spectrum was genotyped using 97 secreted protein-single nucleotide polymorphism (SP-SNP) markers to identify candidate avirulence genes using association analysis. Among avirulence genes corresponding to 19 resistance genes, significantly associated SP-SNP markers were detected for avirulence genes AvYr1, AvYr2, AvYr6, AvYr7, AvYr8, AvYr44, AvYrExp2, AvYrSP, and AvYrTye. These results indicate that association analysis can be used to identify markers for avirulence genes. This study has laid the foundation for developing more SP-SNPs for mapping avirulence genes using segregating populations that can be generated through sexual reproduction on alternate hosts of the pathogen.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat (Triticum aestivum) in Nepal, which is a part of the Himalayas stretching over the North of Nepal, India, Pakistan,...Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat (Triticum aestivum) in Nepal, which is a part of the Himalayas stretching over the North of Nepal, India, Pakistan, Bhutan and beyond. Wheat production plays a crucial role in food security of the marginal hill farmers of Nepal. Frequent epidemics of the rust have caused huge loss in farmer's field. Periodic monitoring during 1980-2008 showed that changes in virulence occurred during this period. The objective of this study was to evaluate Pst resistance and its effective genes in wheat genotypes. For this, trap nurseries, wheat stripe rust differentials, commercial cultivars and advanced breeding lines were tested under artificial epiphytotic and natural hot spots conditions during 2005 to 2010. Four genes (Yr5, Yr10, Yr15 and YrSp) consistently showed resistance to the prevailing races. The gene Yr9 and Yr27 in combinations with Yrl8 were found effective. Other lines with combination of minor genes were also found effective. The genotypes Amadina, Kukuna, Tukuru, Kakatsi and Buck Buck widely used in breeding program were resistant. The cultivation of varieties WK1204, Gautam, Gaura and Dhaulagiri have ensured genetic diversity for the rust resistance and slowed down frequent occurrence of epidemics. The findings of these studies could help in developing effective varietal resistance program in the sub-continent.展开更多
Wheat powdery mildew and stripe rust are the major diseases in wheat producing area in Xinjiang.To obtain wheat germplasm resources and varieties resistant to powdery mildew and rust,36 high-generation stable strains ...Wheat powdery mildew and stripe rust are the major diseases in wheat producing area in Xinjiang.To obtain wheat germplasm resources and varieties resistant to powdery mildew and rust,36 high-generation stable strains of Xinjiang winter wheat were evaluated using the method of natural inducement from 2018 to 2020.A total of 5 strains with high resistance to powdery mildew,4 strains with slow stripe rust and 1 strain with resistance to powdery mildew and adult plant slow stripe rust were obtained.And the parental combination of disease-resistant varieties was analyzed.These studies will provide theoretical basis for the breeding of resistant wheat varieties in Xinjiang.展开更多
The aim of this study is to clarify the application effect of pesticide decrement synergist ' Jijian' on wheal stripe lUSt. Sampling investigation, randomized block design and statistic analysis were carried out to ...The aim of this study is to clarify the application effect of pesticide decrement synergist ' Jijian' on wheal stripe lUSt. Sampling investigation, randomized block design and statistic analysis were carried out to find out the field efficacy of adding ' Jijian' to triadimefon WP and propiconazole EC on controlling wheat stripe rust. The results showed that during the epidemic period of stripe rust, the control effects on the 7^th and the 19^th d reached more than 93% and 100% , respectively, by the application of 15% triadimefon WP of 1 200 g/hm^2 and 25% propiconazole EC of 600 mlhm^2 , respectively for 2 times ; when 15% triadimefon WP of 840 g/hm^2 + ' Jijian' of 225 g/hm^2 or 25 % propiconazole EC of 420 mlhm^2 + ' Jijian' of 225 g/hm^2 were applied ( adding ' Jijian' and reducing the dosage of the 2 pesticides by 30% ) , the control effect on the 7^th d was 89.4% and 91.7% , respectively, while the control effect on the 19a' d was 99.8 - 100% ; when 15% triadimefon WP of 720 - 600 g/hm^2 + ' Jijian' of 225 g/hm^2 or 25% propiconazole EC 360 - 300 mlhm^2 + ' Jijian' of 225 g/hm^2 were applied ( adding ' Jijian' and reducing the dosage of the 2 pesticides by 40% - 50% ) , the control effect on the 7a' day reached more than 78.0% , while the control effect on the 19^th day was 97.7% - 99.8%. There was no significant difference on the control effect at the 7^th d between the treatments using the 2 pesticides alone and the treatments adding ' Jijian' and reducing the dosage of the 2 pesticides by 30%, but all had significant differences from the treatments adding ' Jijian' and reducing the dosage of the 2 pesticides by40% -50%. There was no significant difference on the control effect of the 19^th d among different treatments. Therefore, if the disease is not serious, the application of ' Jijian' can reduce the application amounts of pesticides by 40% -50%, that is, 15% triadimefon WP of 720 -600 g/hm^2 + ' Jijian' of 225 g/hm^2 or 25 % propiconazole EC of 360- 300 ml/hm^2 + ' Jijian' of 225 g/hm^2, which is helpful to reduce the pesticide application amounts and pesticide residue pollution, and save the control costs.展开更多
基金supported by the Major Program of National Agricultural Science and Technology of China (NK20220607)the National Natural Science Foundation of China (32272059 and31971883)the Science and Technology Department of Sichuan Province (2022ZDZX0014, 2021YFYZ0002, 2021YJ0297, and23NSFTD0045)。
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.
基金supported by the National Natural Science Foundation of China(31771783)the Key Research and Development Program of Sichuan Province,China(2021YFYZ0002)the Sichuan Science and Technology Program,China(2018HH0130 and 2022YFH0105)。
文摘Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and the contents of iron(Fe),zinc(Zn),and seed gluten proteins.Forty-two of the accessions were classified as resistant to stripe rust,while the other four accessions were classified as susceptible to stripe rust in four environments.The average HD of Ae.umbellulata was significantly longer than that of three common wheat cultivars(180.9 d vs.137.0 d),with the exception of PI226500(138.9 d).The Ae.umbellulata accessions also showed high variability in Fe(69.74-348.09 mg kg^(-1))and Zn(49.83-101.65 mg kg^(-1))contents.Three accessions(viz.,PI542362,PI542363,and PI554399)showed relatively higher Fe(230.96-348.09 mg kg^(-1))and Zn(92.46-101.65 mg kg^(-1))contents than the others.The Fe content of Ae.umbellulata was similar to those of Ae.comosa and Ae.markgrafii but higher than those of Ae.tauschii and common wheat.Aegilops umbellulata showed a higher Zn content than Ae.tauschii,Ae.comosa,and common wheat,but a lower content than Ae.markgrafii.Furthermore,Ae.umbellulata had the highest proportion of γ-gliadin among all the species investigated(Ae.umbellulata vs.other species=mean 72.11%vs.49.37%;range:55.33-86.99%vs.29.60-67.91%).These results demonstrated that Ae.umbellulata exhibits great diversity in the investigated traits,so it can provide a potential gene pool for the genetic improvement of these traits in wheat.
文摘Wheat stripe rust has become the most dangerous disease which threaten safe yield of wheat in Sichuan Province. It is meaningful to provide technique support for integrated disease control by exploring the effective control measures of wheat stripe rust. Wheat stripe rust dynamic developments of all-planting and mixed-planting have been systematically investigated in this study by taking different mixed-planting combinations among 6 wheat varieties with different resistance levels. The results of this experiment show that the mixed-plantings of 4 and 6 wheat varieties can delay the occurance of wheat stripe rust,slow the speed of disease and decline the damage of disease as well as stabilize yield of wheats.
基金Supported by National 863 Program of China(2011AA10A106)Director Fund of the Institute of Food Crops+1 种基金Yunnan Academy of Agricultural Sciences(2013LZS003)Program for Science and Technology Innovation Talents of Yunnan Province(2012HC008)~~
文摘Yunmai52, developed by crossing with common wheat-Haynaldia villosa6AL/6VS translocation line 92R149 as a resistant parent in 1992, was a common wheat cultivar approved and released in 2007 in Yunnan Province, China, which is characterized by high resistance to powdery mildew and stripe rust. In this study,an F_2 population derived from a cross K78S/Yunmai52 was constructed to investigate the resistance genes, where K78 S is a wheat male sterile line susceptible to powdery mildew and stripe rust. Phenotypic identification of the parents, F_1 and F_2 populations and chi-square analyses showed that F_1 population was immune to stripe rust and powdery mildew; the segregation ratio of resistance and susceptibility to powdery mildew(χ~2=1.10χ~2_(1,0.05)=3.84) and stripe rust(χ~2=0.15χ~2_(1,0.05)=3.84) fit to a 3:1 ratio in F_2 population, indicating that Yunmai52 harbors a dominant stripe rust resistance gene and a dominant powdery mildew resistance gene. The individuals were further detected with a marker co-segregated with Pm21(SCAR_(1400)) and two markers closely linked with Yr26(XWe173 and Xbarc181). The results showed that polymorphic bands could be amplified between the parents and between resistance and susceptibility gene pools at the same locus. Randomly 96 individuals of F_2 population were selected for verification. The results showed that the phenotype was significantly correlated with the genotype. The detection accuracy of markers SCAR_(1400), XWe173 and Xbarc181 was 100%, 97.91% and 92.70%, respectively.Yunmai52 harbored powdery mildew resistance gene Pm21 and stripe rust resistance gene Yr26, which were both derived from 6AL/6VS translocation line 92R149.In addition, the results also demonstrate that Pm21 and Yr26 are two genes conferring durable resistance to powdery mildew and stripe rust in wheat.
文摘On basis of the research result of stripe rust for 16 years since 1999,the epidemic characteristics and trend of stripe rust in the city were determined.Namely,the earlier the initial stage appeared,the heavier the disease would be.Furthermore,stripe rust has two introduction infection peaks,of which the first peak plays a key role.In farmlands,there are one to three epidemic peaks,and the infection area of the first peak plays the key role on the epidemic area of that year.In addition,the accumulated areas of late January was in significantly positive correlation with annually total area,with a correlation coefficient of 0.769 2.In recent 16 years,the frequency of severe stripe rust was as high as 81.25% which was 50% higher than that before 1995.The slight stripe rust became just in 2013,with a frequency of 6.3%,which indicated that the city has become a region hit by severe stripe rust.The internal reason is the reduction or loss of wheat variety's resistance to tripe rust for a new physiological race of rust is becoming pathogenic stronger and be the major race.Big fluctuation of temperatures in warm winter and spring,foggy and dew days slants much would be the external reason.
文摘[Objective] The study aimed to screen wheat cultivars with high temperature resistance to stripe rust from the wheat resources in Huanghuai growth area. [Method] Seedlings of 165 wheat cultivars from Huanghuai growth area were identified by wheat stripe rust under high temperature; then the wheat cultivars showing stripe rust at seedling stage were further used to identify the same resistance in field. [Results] 13 cultivars were proved to be stripe rust resistant under high temperature, and the expression stages of stripe rust in the 13 cultivars were revealed. The field identification results confirmed the identification results at seedling stage via inoculation of mixed stripe rust of physiological races. The stripe resistances of wheat cultivars were also proved to be non-race-specific. [Conclusion] Wheat resources in Huanghuai growth area are abundant in wheat cultivars with high temperature resistance to stripe rust.
文摘[Objective] The aim of this study is to establish the model for forecasting wheat stripe rust occurrence condition using meteorological factors. [Method] Based on the data of wheat stripe rust occurrence degrees in its past prevalent years and the meteorological data at corresponding periods, the methods of grey correlation analysis and fuzzy mathematics were employed to establish the forecast model for four pathogenesis indices according to the time sequence before winter, Early March, Early April and Middle May. Thus, the criterion for forecasting the occurrence degree of wheat stripe rust was obtained based on the distribution method of arithmetic progression. [Result] The model corresponding to meteorological conditions for forecasting wheat stripe rust was successfully established. According to the verification, the forecasting results before winter and in Early Mar. were more severer than the real occurrence condition, while the forecasting results in Early Apr. and Middle May were basically consistent with real values. [Conclusion] The results of the present study may avail the control of wheat stripe rust in Henan Province.
基金supported by grants from the National Basic Research Program of China (2006CB708208,2006CB101901)the Program for Changjiang Scholars and Innovative Research Team in University, Ministry of Education of China (IRT0558)+1 种基金the National Natural Science Foundation of China (30930064)the 111Project from the Ministry of Education of China(B07049)
文摘Pathogenesis-related proteins (PRs) play many important roles in plant defense response against pathogen attack. To better understand the molecular mechanism of PR genes involved in wheat adult plant resistance (APR) to stripe rust, based on a differentially expressed transcribed derived fragment (TDF), a novel PR gene from wheat cv. Xingzi 9104 infected by the Puccinia striiformis Westend f. sp. tritici Erikss. pathotype CY32, which was highly similar to the maize ZmPRIO gene and designated as TaPRIO, was identified using in silico cloning and RT-PCR method. This novel TaPRIO gene was predicted to encode a 160-amino acid protein with a deduced molecular weight of 17.06 kDa and an isoelectronic point (pI) of 5.19. An amino acid sequence analysis of TaPR10 demonstrated the presence of a typical conserved domain of pathogenesis related protein Bet v I family. Multiple alignment analysis based on the amino acids encoded by 10 different PRIO genes from maize (Zea mays), rice (Oryza sativa), broomcorn (Sorghum bicolor), and wheat (Triticum aestivum) indicated that PR proteins of class 10 was conserved among the 4 plant species with about 80% similarity. DNA sequence of TaPRIO suggested the presence of one 84-bp intron with the splicing sites of GT-AT bi-nucleotide sequence between 188 and 271 bp. Using a real-time quantitative RT-PCR (qRT-PCR), expression profiles of TaPRIO revealed that at the adult-plant stage, TaPRIO transcript was up-regulated as early as 12 h post-inoculation (hpi), with the occurrence of maximum induction at 24 hpi. At the seedling stage, TaPRIO was also slightly induced 18 hpi. However, the transcript amount was relatively lower than that of the adult-plant stage. Taken together, these results suggest that TaPRIO may participate in wheat defense response of APR to stripe rust.
文摘Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of rust pathogen have led to serious crisis of resistance loss in widely planted varieties. This has quickened the search for new resistance resources. Molecular marker could facilitate the identification of the location of novel genes. A line A-3 with high resistance (immune) to currently epidemic yellow rust races (CY29, 31, 32) was screened out in offspring of Triticum aestivura x Thinopyrum ponticum. Segregation in F2 and BC1 populations indicated that the resistance was controlled by two independent genes: one dominant and one recessive. SSR markers were employed to map the two resistant genes in the F2 and BC1 populations. A marker WMC477-167bp located on 2BS was linked to the dominant gene with genetic distance of 0.4 cM. Another marker WMC364-2os bp located on 7BS was linked to the recessive-resistant gene with genetic distance of 5.8 cM. The two genes identified in this paper might be two novel stripe rust resistant genes, which were temporarily designated as YrTpl and YrTp2, respectively. The tightly linking markers facilitate transfer of the two resistant genes into the new varieties to control epidemic of yellow rust.
基金supported by the 111 Project from the Education Ministry of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of the Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)
文摘Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f.sp.tritici prevalent in China.To elucidate the genetic basis of the resistance,the segregating populations were developed from the cross between V3 and susceptible genotype Mingxian 169,seedlings of the parents and F 2 progeny were tested with six prevalent pathotypes,including CYR29,CYR31,CYR32-6,CYR33,Sun11-4,and Sun11-11,F 1 plants and F 3 lines were also inoculated with Sun11-11 to confirm the result further.The genetic studied results showed that the resistance of V3 against CYR29 was conferred by two dominant genes,independently,one dominant gene and one recessive gene conferring independently or a single dominant gene to confer resistance to CYR31,two complementary dominant genes conferring resistance to both CYR32-6 and Sun11-4,two independently dominant genes or three dominant genes(two of the genes show cumulative effect) conferring resistance to CYR33,a single dominant gene for resistance to Sun11-11.Resistance gene analog polymorphism(RGAP) and simple-sequence repeat(SSR) techniques were used to identify molecular markers linked to the single dominant gene(temporarily designated as YrV3) for resistance to Sun11-11.A linkage map of 2 RGAP and 7 SSR markers was constructed for the dominant gene using data from 221 F 2 plants and their derived F 2:3 lines tested with Sun11-11 in the greenhouse.Amplification of the complete set of nulli-tetrasomic lines of Chinese Spring with a RGAP marker RG1 mapped the gene on the chromosome 1B,and then the linked 7 SSR markers located this gene on the long arm of chromosome 1B.The linkage map spanned a genetic distance of 25.0 cM,the SSR markers Xgwm124 and Xcfa2147 closely linked to YrV3 with genetic distances of 3.0 and 3.8 cM,respectively.Based on the linkage map,it concluded that the resistance gene YrV3 was located on chromosome arm 1BL.Given chromosomal location,the reaction patterns and pedigree analysis,YrV3 should be a novel gene for resistance to stripe rust in wheat.These closely linked markers should be useful in stacking genes from different sources for wheat breeding and diversification of resistance genes against stripe rust.
基金supported by the National Natural Science Foundation of China (42171394, 41601467)。
文摘The wheat canopy reflectance spectrum is affected by many internal and external factors such as diseases and growth stage. Separating the effects of disease stress on the crop from the observed mixed signals is crucial for increasing the precision of remote sensing monitoring of wheat stripe rust. The canopy spectrum of winter wheat infected by stripe rust was processed with the difference-in-differences(DID) algorithm used in econometrics. The monitoring accuracies of wheat stripe rust before and after processing with the DID algorithm were compared in the presence of various external factors, disease severity, and several simulated satellite sensors. The correlation between the normalized difference vegetation index processed by the DID algorithm(NDVI-DID) and the disease severity level(SL) increased in comparison with the NDVI before processing. The increase in precision in the natural disease area in the field in the presence of large differences in growth stage, growth, planting, and management of the crop was greater than that in the controlled experiment. For low disease levels(SL < 20%), the R2 of the regression of NDVI-DIDon SL was 38.8% higher than that of the NDVI and the root mean square error(RMSE) was reduced by 11.1%. The increase in precision was greater than that for the severe level(SL > 40%).According to the measured hyperspectral data, the spectral reflectance of three satellite sensor levels was simulated. The wide-band NDVI was calculated. Compared with the wide-band NDVI and vegetation indexes(VI) before DID processing, there were increases in the correlation between SL and the various types of VIS-DID, as well as in the correlation between SL and NDVI-DID. It is feasible to apply the DID algorithm to multispectral satellite data and diverse types of VISfor monitoring wheat stripe rust. Our results improve the quantification of independent effects of stripe rust infection on canopy reflectance spectrum,increase the precision of remote sensing monitoring of wheat stripe rust, and provide a reference for remote sensing monitoring of other crop diseases.
基金supported by the National Key Basic Research Program of China(2013CB127700)the National Natural Science Foundation of China(31101393)
文摘Stripe rust caused by Puccinia striiformis f. sp. tritici is an important wheat disease worldwide that is greatly influenced by environmental conditions. Ultraviolet B(UV-B) radiation is one important environmental factor affecting the occurrence and epidemiology of wheat stripe rust. Investigating UV-B radiation effects on the epidemiology of stripe rust may be conducive to monitoring and predicting this disease. In this study, wheat seedlings were exposed to UV-B radiation during different periods under laboratory conditions and radiation effects on epidemiological components of wheat stripe rust were investigated. Results showed that incubation period was shortened, and the infection efficiency, sporulation quantity and disease index increased when UV-B radiation was performed only pre-inoculation. When the UV-B radiation was performed only postinoculation or both pre-and post-inoculation, the incubation period was prolonged, and the infection efficiency, sporulation quantity and disease index were reduced. When healthy wheat seedlings were inoculated using urediospores collected from wheat leaves irradiated by UV-B only post-inoculation or both pre-and post-inoculation, infection efficiency, sporulation quantity and disease index were also reduced. However, in the latter, the disease incubation period did not differ under varying UV-B radiation intensities compared to that when wheat leaves were not treated with UV-B radiation. Overall, the effects of direct exposure of wheat plants to UV-B radiation with different intensities in different periods on epidemiological components of wheat stripe rust were systematically explored, and the results suggest that the effects of UV-B radiation increased gradually with the increase of UV-B radiation intensity. This information provides a basis for monitoring and predicting this disease as well as for conducting further studies on pathogen virulence variation.
基金funded by the National Natural Science Foundation of China(30971778)Open Fund Project of State Key Laboratory for Biology of Plant Diseases and Insect Pests,China(2008.1-2008.12)China Postdoctoral Science Foundation(200902552)
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the major diseases of wheat in China. In order to asses the resistance levels and existing Yr genes among 59 wheat cultivars (lines) from the Pacific Northwest (PNW) of the United States, to provide resistance resources for genetic improvement of wheat stripe rust resistance in China, 59 wheat cultivars (lines) from PNW of the United States were infected by 3 mixed races of predominant Chinese stripe rust races CRY31, CRY32, and CRY33 to evaluate their resistance at seedling and adult plant stages, and screened with molecular markers tightly linked to currently effective all-stage resistance genes YrlO, Yrl5 and adult plant resistance genes Yrl8, Yr39. Of 59 American cultivars (lines), five cultivars (lines), Expresso, 02W50076, ACS52610, WA008012, and WA00801833, had all-stage resistance, showing resistance to mixed races of CRY31, CRY32, and CRY33 at both seedling and adult plant stages. 33 cultivars (lines) had adult plant resistance, only showing resistance to stripe rust at adult stage. Based on the molecular screening, none of the 59 PNW cultivars (lines) had the polymorphic bands of linked markers to YrlO. There were 12, 33 and 29 cultivars (lines) which bad polymorphic bands of linked markers to Yr15, Yr18 and Yr39, accounting for 20, 55 and 49% of the 59 PNW cultivars (lines), respectively. All these results suggested that Yr15, Yr18 and Yr39 were widespread among PNW cultivars (cultivars) and could be utilized in Chinese wheat stripe rust resistance breeding.
基金the National Key R&D Program of China(2018YFD0200500)the National Natural Science Foundation of China(31960524,31071641 and 32072358)+1 种基金the Fundamental Research Funds for the Central Universities(2452019046)the Natural Science Basic Research Plan in Shaanxi Province of China(2020JZ-15,2017JM3006)。
文摘Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.
基金Supported by Comprehensive Prevention and Treatment Monitoring Station of Inoculum Source of Wheat Stripe Rust in Nanchong City(NYBNJH[2003]104)Notice of the Ministry of Agriculture on Identification of the First Batch of National Modern Agricultural Demonstration Zone(NJF[2010]22)+2 种基金Occurrence and Epidemic Regularity of Wheat Stripe Rust and Its Integrated Control Technology in Nanchong City(N1998-ZC018)Fundamental Research Funds for the Central Universities(XDJK2015C060,SWU114046,2362015xk04)Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas(CSBAA2015009)
文摘In order to realize monitoring and early warning and comprehensive management of wheat stripe rust and to reduce its occurrence in Nanchong City, the occurrence and epidemic regularity of wheat stripe rust in Nanchong was studied by system monitoring and general survey, resistance identification, physiological race monitoring and meteorological data analysis. The initial occurrence location and spreading pathway of Puccinia striiformis f. sp. tritici (Pst) were first verified; there were two infection peaks of wheat stripe rust in Nanchong and one to three epidemic peaks in fields, in which the occurrence area of the first epidemic peak played a pivotal role in disease prevalence in that year; the cumulative occurrence area in late January was positively correlated with annual occurrence area, with the correlation coefficient of 0.769 ; the prediction model for infected field rate, diseased plant rate and annual occurrence area was established. The internal reason for heavy occurrence and prevalence of wheat stripe rust in Nanchong was the decline or loss of wheat resistance against stripe rust, as well as the appearance of physiological races of Pst, which later became dominant races. Large fluctuation of temperature in warm winter and spring and more fog and dew days were external reasons responsible for prevalence of stripe rust. From 2002 to 2014 ,the accuracy rate of short-term prediction of wheat stripe rust reached 100%, while that of me- dium-term and long-term prediction reached over 98% and 95%, respectively, 5% -15% higher than that of the years before 1998.
基金financially the National Natural Science Foundation of China(31871611 and31971890)the National Science Foundation for Young Scientistsin China(31901494 and 31901869)+1 种基金International Cooperation and Exchange of the National Natural Science Foundation of China(31961143019)the Integrated Extension Project of Agricultural Science and Technology Innovation in Shaanxi Province(NYKJ-2021-YL(XN)15)。
文摘The development and deployment of diverse resistance sources in new wheat cultivars underpin the durable control of stripe rust.In the present study,two loci for adult plant resistance(APR),QYr SM155.1 and QYr SM155.2,were identified in the Chinese wheat breeding line Shaanmai 155.QYr SM155.1 was mapped to a 3.0-c M interval between the single-nucleotide polymorphism(SNP)markers AX-109583610 and AX-110907562 on chromosome arm 2 BL.QYr SM155.2 was mapped to a 2.1-c M interval flanked by the SNP markers AX-110378556 and AX-86173526 on chromosome arm 7 AS.A genome-wide association study was used to identify markers associated with APR in a panel of 411 spring wheat lines.Thirteen and 11 SNPs were significantly associated with QYr SM155.1 and QYr SM155.2,respectively,corresponding to physical intervals of 653.75–655.52 Mb on 2 BL and 81.63–83.93 Mb on7 AS.To characterize the haplotype variation and the distribution of these QTL,haplotype analysis was performed based on these SNPs in an independent panel of 1101 worldwide wheat accessions.Three major haplotypes(2 B_h1,2 B_h2,and 2 B_h3)for QYr SM155.1 and four major haplotypes(7 A_h1,7 A_h2,7 A_h3,and 7 A_h4)for QYr SM155.2 were identified.Accessions individually harboring QYr SM155.1_h1 and QYr SM155.2_h1 haplotypes and their combination displayed resistance.Additional assays of 1306 current Chinese cultivars and breeding lines using markers flanking QYr SM155.1 and QYr SM155.2 indicated that the resistance haplotypes of the two QTL were present in respectively 1.45%and 14.16%of lines.Increasing resistance haplotype frequencies at these two loci using marker-assisted selection should benefit wheat production in China.
文摘Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics of wheat resistance to this disease, but few on avirulence of the pathogen due mainly to the nature of obligate biotrophism and the lack of systems for studying its genetics and molecular manipulations. To overcome these limitations, a natural Pst population comprising 352 isolates representative of a diverse virulence spectrum was genotyped using 97 secreted protein-single nucleotide polymorphism (SP-SNP) markers to identify candidate avirulence genes using association analysis. Among avirulence genes corresponding to 19 resistance genes, significantly associated SP-SNP markers were detected for avirulence genes AvYr1, AvYr2, AvYr6, AvYr7, AvYr8, AvYr44, AvYrExp2, AvYrSP, and AvYrTye. These results indicate that association analysis can be used to identify markers for avirulence genes. This study has laid the foundation for developing more SP-SNPs for mapping avirulence genes using segregating populations that can be generated through sexual reproduction on alternate hosts of the pathogen.
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat (Triticum aestivum) in Nepal, which is a part of the Himalayas stretching over the North of Nepal, India, Pakistan, Bhutan and beyond. Wheat production plays a crucial role in food security of the marginal hill farmers of Nepal. Frequent epidemics of the rust have caused huge loss in farmer's field. Periodic monitoring during 1980-2008 showed that changes in virulence occurred during this period. The objective of this study was to evaluate Pst resistance and its effective genes in wheat genotypes. For this, trap nurseries, wheat stripe rust differentials, commercial cultivars and advanced breeding lines were tested under artificial epiphytotic and natural hot spots conditions during 2005 to 2010. Four genes (Yr5, Yr10, Yr15 and YrSp) consistently showed resistance to the prevailing races. The gene Yr9 and Yr27 in combinations with Yrl8 were found effective. Other lines with combination of minor genes were also found effective. The genotypes Amadina, Kukuna, Tukuru, Kakatsi and Buck Buck widely used in breeding program were resistant. The cultivation of varieties WK1204, Gautam, Gaura and Dhaulagiri have ensured genetic diversity for the rust resistance and slowed down frequent occurrence of epidemics. The findings of these studies could help in developing effective varietal resistance program in the sub-continent.
基金National Key Research and Development Program of China(2017YFD0101003)Science and Technology Program of Xinjiang Production and Construction Corps(2016AC027,2019AB021).
文摘Wheat powdery mildew and stripe rust are the major diseases in wheat producing area in Xinjiang.To obtain wheat germplasm resources and varieties resistant to powdery mildew and rust,36 high-generation stable strains of Xinjiang winter wheat were evaluated using the method of natural inducement from 2018 to 2020.A total of 5 strains with high resistance to powdery mildew,4 strains with slow stripe rust and 1 strain with resistance to powdery mildew and adult plant slow stripe rust were obtained.And the parental combination of disease-resistant varieties was analyzed.These studies will provide theoretical basis for the breeding of resistant wheat varieties in Xinjiang.
基金Supported by the Notice of the Ministry of Agriculture on Approving the First National Modern Agricultural Demonstration Zones in China(Nongjifa[2010]No.22)the Notice of the General Office of the Ministry of Science and Technology on the Construction of the Sixth National Agricultural Science and Technology Parks(National Science and Technology Office for Agriculture[2015]No.9)the Chongqing Research Program of Basic Research and Frontier Technology(cstc2016jcyjA 0316)
文摘The aim of this study is to clarify the application effect of pesticide decrement synergist ' Jijian' on wheal stripe lUSt. Sampling investigation, randomized block design and statistic analysis were carried out to find out the field efficacy of adding ' Jijian' to triadimefon WP and propiconazole EC on controlling wheat stripe rust. The results showed that during the epidemic period of stripe rust, the control effects on the 7^th and the 19^th d reached more than 93% and 100% , respectively, by the application of 15% triadimefon WP of 1 200 g/hm^2 and 25% propiconazole EC of 600 mlhm^2 , respectively for 2 times ; when 15% triadimefon WP of 840 g/hm^2 + ' Jijian' of 225 g/hm^2 or 25 % propiconazole EC of 420 mlhm^2 + ' Jijian' of 225 g/hm^2 were applied ( adding ' Jijian' and reducing the dosage of the 2 pesticides by 30% ) , the control effect on the 7^th d was 89.4% and 91.7% , respectively, while the control effect on the 19a' d was 99.8 - 100% ; when 15% triadimefon WP of 720 - 600 g/hm^2 + ' Jijian' of 225 g/hm^2 or 25% propiconazole EC 360 - 300 mlhm^2 + ' Jijian' of 225 g/hm^2 were applied ( adding ' Jijian' and reducing the dosage of the 2 pesticides by 40% - 50% ) , the control effect on the 7a' day reached more than 78.0% , while the control effect on the 19^th day was 97.7% - 99.8%. There was no significant difference on the control effect at the 7^th d between the treatments using the 2 pesticides alone and the treatments adding ' Jijian' and reducing the dosage of the 2 pesticides by 30%, but all had significant differences from the treatments adding ' Jijian' and reducing the dosage of the 2 pesticides by40% -50%. There was no significant difference on the control effect of the 19^th d among different treatments. Therefore, if the disease is not serious, the application of ' Jijian' can reduce the application amounts of pesticides by 40% -50%, that is, 15% triadimefon WP of 720 -600 g/hm^2 + ' Jijian' of 225 g/hm^2 or 25 % propiconazole EC of 360- 300 ml/hm^2 + ' Jijian' of 225 g/hm^2, which is helpful to reduce the pesticide application amounts and pesticide residue pollution, and save the control costs.