With symbolic computation, some lump solutions are presented to a(3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic fun...With symbolic computation, some lump solutions are presented to a(3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.展开更多
We present a flexible manipulation and control of solitons via Bose-Einstein condensates.In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential,our investigation reveals t...We present a flexible manipulation and control of solitons via Bose-Einstein condensates.In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential,our investigation reveals the numerical local solutions within the system.By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation,diverse soliton structures emerge within the system.These include plane-wave solitons,two distinct types of stripe solitons,and odd petal solitons with both single and double layers.The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling.Specifically,stripe solitons can maintain a stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain a stable existence under similar conditions.When rotational frequency is introduced to the system,solitons undergo a transition from stripe solitons to a vortex array characterized by a sustained rotation.The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling.As a result,the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.11271211,11275072,and 11435005Ningbo Natural Science Foundation under Grant No.2015A610159+1 种基金the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No.xkzw11502K.C.Wong Magna Fund in Ningbo University
文摘With symbolic computation, some lump solutions are presented to a(3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.
基金the Natural Science Foundation of Zhejiang Province of China(Grant No.LZ22A050002)the National Natural Science Foundation of China(Grant Nos.12074343 and 11835011)Muhammad Idrees acknowledges support from the postdoctoral fellowship of Zhejiang Normal University(Grant No.YS304123952).
文摘We present a flexible manipulation and control of solitons via Bose-Einstein condensates.In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential,our investigation reveals the numerical local solutions within the system.By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation,diverse soliton structures emerge within the system.These include plane-wave solitons,two distinct types of stripe solitons,and odd petal solitons with both single and double layers.The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling.Specifically,stripe solitons can maintain a stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain a stable existence under similar conditions.When rotational frequency is introduced to the system,solitons undergo a transition from stripe solitons to a vortex array characterized by a sustained rotation.The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling.As a result,the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions.