Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining tech...Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.展开更多
The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this stu...The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.展开更多
Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical ...Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical simulations and statistical regressions were applied for analyzing the recovery processes of the backfill and its major influencing factors for the thermal equilibrium in recently backfilled open pits at the Gulian strip coalmine in Mo'he, Northeast China. Results show that the thermal recovery time of backfilled areas is positively correlated to the backfill depth(BD) of the soils, the backfilled soil temperature(BST), and the mean annual ground surface temperature(MAGST); meanwhile, climate warming can impact on thermal regimes of the backfill area. The impact of climate warming on ground temperature of the backfill will show up significantly in about 50 years afterbackfilling(BD at 10.0 and 20.0 m, BST at 20.0°C) under the climate warming scenario(CWS) of 0.025°C·year ^(-1). Grey-relation analyses show that the sensitivity of the backfill recovery time declines in the order of the BD, BST and MAGST. On the basis of the abovementioned studies, the layer-by-layer backfilling in cold seasons is advised for more effective and more rapid recovery of thermal regimes of the backfilled open-pits in cold regions.展开更多
The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static l...The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining.展开更多
In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to s...In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.展开更多
Statistics and analysis was made in causes, places and proportions about all kinds of disasters and accidents in coal mines of China in resent 50 years. The analysis indicates the emphasis reason that result in the ac...Statistics and analysis was made in causes, places and proportions about all kinds of disasters and accidents in coal mines of China in resent 50 years. The analysis indicates the emphasis reason that result in the accidents in coal mines are artificial cause explosion of mash gas and coal dust, water flood, fire hazard. The accidents mostly happened on stope which is more often than other places, following by the driving work face. This not only supplies the managers with basic reference about safe administration, but also suggests the countermeasures in reducing accidents: improve the disposition of person, perfect all kinds of rules and regulations, severely investigate, analyze and deal with the accidents.展开更多
Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still d...Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still deficient in multi-coal seam strip mining at present. Based on the three dimension fast Lagrangian analysis of continua (short for FLAC3D) numerical simulation software, the laws of the stress increasing coefficient on the coal pillar and its stability were systematically studied for different depths, different mining widths, different interlayer spacings, different mining thicknesses, different properties of interstratified rock and the spacial relations of the upper and lower pillars in vertical alignment in multi-coal seam strip mining. The function relation between the stress increasing coefficient of upper and lower pillars with the mining depth, mining widths, interlayer spacing, mining thickness, property of interstratified rock and the spatial relationship were obtained.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village ho...This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village houses. The stratum structure control action of mining subsidence was used to design the mining and pillar width. To further raise resources recovery, we adopted the mutative scheme of mining and pillar width. Observation was carried out while mining. Research shows there is feasibility of the strip mining technology to protecting the village buildings of the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. Finally, subsidence parameters of strip mining were obtained. It is the basic data of the strip mining of the coal field at the north of the Yellow River.展开更多
It is an important part of green mining to control the disasters of coal mining which have caused irreversible damages to buildings and ecological environment. Strip mining is one of the efficient measures to control ...It is an important part of green mining to control the disasters of coal mining which have caused irreversible damages to buildings and ecological environment. Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the research on the laws of the surface subsidence are still deficient in multi-coal seam strip mining at present. Based on the Fast Lagrangian Analysis of Continua(short for FLAC3D) numerical simulation software, the laws of the surface subsidence and horizontal movement were systematically studied for different depths, different mining widths, different distances between seams, different mining thickness, different parameters between seams and the special relations of the upper pillar and the lower pillar in the vertical direction in multi-seam strip mining. The function relation between the maximum subsidence and the maximum horizontal movement with the depth, the mining width, the seam distance, mining thickness, different parameters between seams and the partial offset are summarized respectively. Finally the formula integrating the surface maximum subsidence value and the maximum horizontal movement was deduced. The results can be used for reference theory and measure in forecasting the surface displacement in multi-coal seam strip mining.展开更多
Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditio...Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.展开更多
The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures t...The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.展开更多
This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mine...This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.展开更多
文摘Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized.
基金funded by the National Key Research and Development Program Subject(No.2018YFC0807804)。
文摘The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.
基金supported by the research projects of the National Natural Science Foundation of China (Grant No. 41401081) "Thermal impacts of organic matter on properties of permafrost soils in the Da Xing'anling (Hinggan) Mountains"the State Key Laboratory of Frozen Soils Engineering, Ministry of Science and Technology, China "Impacts of human activities on the hydrothermal processes of permafrost in the Da Xing'anling (Hinggan) Mountains – a case study from the Gulian strip coal mine" (Grant No. SKLFSE-ZT-41)
文摘Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical simulations and statistical regressions were applied for analyzing the recovery processes of the backfill and its major influencing factors for the thermal equilibrium in recently backfilled open pits at the Gulian strip coalmine in Mo'he, Northeast China. Results show that the thermal recovery time of backfilled areas is positively correlated to the backfill depth(BD) of the soils, the backfilled soil temperature(BST), and the mean annual ground surface temperature(MAGST); meanwhile, climate warming can impact on thermal regimes of the backfill area. The impact of climate warming on ground temperature of the backfill will show up significantly in about 50 years afterbackfilling(BD at 10.0 and 20.0 m, BST at 20.0°C) under the climate warming scenario(CWS) of 0.025°C·year ^(-1). Grey-relation analyses show that the sensitivity of the backfill recovery time declines in the order of the BD, BST and MAGST. On the basis of the abovementioned studies, the layer-by-layer backfilling in cold seasons is advised for more effective and more rapid recovery of thermal regimes of the backfilled open-pits in cold regions.
基金fnancially supported by National Natural Science Foundation of China(Grant No.51974295).
文摘The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining.
基金This work was supported by the National Natural Science Foundation of China(51504081,51774110,51508166,U1404527)the Science and Technology Breakthrough Project by Henan Province(162102210221,162102310427)+1 种基金the Foundation for Higher Education Key Research Project by Henan Province(15A440013)the Ph.D.Programs Foundation of Henan Polytechnic University(B2018-65,B2018-4,B2016-67).
文摘In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.
文摘Statistics and analysis was made in causes, places and proportions about all kinds of disasters and accidents in coal mines of China in resent 50 years. The analysis indicates the emphasis reason that result in the accidents in coal mines are artificial cause explosion of mash gas and coal dust, water flood, fire hazard. The accidents mostly happened on stope which is more often than other places, following by the driving work face. This not only supplies the managers with basic reference about safe administration, but also suggests the countermeasures in reducing accidents: improve the disposition of person, perfect all kinds of rules and regulations, severely investigate, analyze and deal with the accidents.
基金Project(KLM200909)supported by Key Laboratory of Mine Spatial Information Technologies(Henan Polytechnic University,Henan Bureau of Surveying & Mapping),State Bureau of Surveying and Mapping
文摘Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still deficient in multi-coal seam strip mining at present. Based on the three dimension fast Lagrangian analysis of continua (short for FLAC3D) numerical simulation software, the laws of the stress increasing coefficient on the coal pillar and its stability were systematically studied for different depths, different mining widths, different interlayer spacings, different mining thicknesses, different properties of interstratified rock and the spacial relations of the upper and lower pillars in vertical alignment in multi-coal seam strip mining. The function relation between the stress increasing coefficient of upper and lower pillars with the mining depth, mining widths, interlayer spacing, mining thickness, property of interstratified rock and the spatial relationship were obtained.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
文摘This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village houses. The stratum structure control action of mining subsidence was used to design the mining and pillar width. To further raise resources recovery, we adopted the mutative scheme of mining and pillar width. Observation was carried out while mining. Research shows there is feasibility of the strip mining technology to protecting the village buildings of the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. Finally, subsidence parameters of strip mining were obtained. It is the basic data of the strip mining of the coal field at the north of the Yellow River.
基金Funded by the Scientific Program of Hunan Provincial Science and Technology Department(2014FJ3104)Scientific Program of Hunan Provincial Education Department(13C313)
文摘It is an important part of green mining to control the disasters of coal mining which have caused irreversible damages to buildings and ecological environment. Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the research on the laws of the surface subsidence are still deficient in multi-coal seam strip mining at present. Based on the Fast Lagrangian Analysis of Continua(short for FLAC3D) numerical simulation software, the laws of the surface subsidence and horizontal movement were systematically studied for different depths, different mining widths, different distances between seams, different mining thickness, different parameters between seams and the special relations of the upper pillar and the lower pillar in the vertical direction in multi-seam strip mining. The function relation between the maximum subsidence and the maximum horizontal movement with the depth, the mining width, the seam distance, mining thickness, different parameters between seams and the partial offset are summarized respectively. Finally the formula integrating the surface maximum subsidence value and the maximum horizontal movement was deduced. The results can be used for reference theory and measure in forecasting the surface displacement in multi-coal seam strip mining.
基金Supported by the National Major Fundamental Research Program of China(973 Project)(2005CB221503)National Science Foundation of China(50544010)
文摘Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.
文摘The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.
文摘This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.