The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films...The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films. The morphologies of the surface and cross-section of the oxide films before and after the films stripping were characterized by using scanning electron microscopy (SEM). The microstructure and chemical compositions of the oxide films before and after the films stripping were investigated by using Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). It was shown that the thickness of the oxide film was in the range of 5-6 μm. The oxide films were stripped for 2 to 8 min in the solution. Moreover, the effect of the stripping time on the efficiency of the film stripping was investigated, and the optimum stripping time was between 6-8 min. When the stripping solution completely dissolved the whole film, the α/β microstructure of the titanium alloy Ti-10V-2Fe-3Al was partly revealed. The stripping mechanism was discussed in terms of the dissolution of film delamination. The hydrogen peroxide had a significant effect on the dissolution of the titanium alloy anodic oxide film. The feasibility of the dissolution reaction also was evaluated.展开更多
Repassivation behaviour of the passive film formed on lean duplex stainless steel UNS S32101 and austenitic stainless steel UNS S30403 in a CO2-saturated oilfield environment has been studied. The native passive film ...Repassivation behaviour of the passive film formed on lean duplex stainless steel UNS S32101 and austenitic stainless steel UNS S30403 in a CO2-saturated oilfield environment has been studied. The native passive film on the alloys was thinned/removed by stepping the potential of the alloy to ﹣850 mV/Ag/AgCl for 30 minutes. Potentiostatic measurements were then taken at potentials of ﹣200, ﹣100, 0, 100 and 200 mV versus Ag/AgCl. Results show that the passive film repassivates at potentials of ﹣200 and ﹣100 mV and 0 mV for both alloys at 50°C. The current density however continues to rise for potentials of 100 and 200 mV. This shows that both alloys are susceptible to pitting at potentials above 100 mV at the test temperature of 50°C.展开更多
The main practical difficulty associated to the task of the dismantling and decommissioning of the IPEN's old nuclear fuel cycle facilities has been the big amount of radioactive waste generated in the dismantling op...The main practical difficulty associated to the task of the dismantling and decommissioning of the IPEN's old nuclear fuel cycle facilities has been the big amount of radioactive waste generated in the dismantling operations. The waste is mainly in the form of contaminated carbon steel structures. In the IPEN, the presence of contamination in the equipments, structures and buildings, although restricted to low and medium activity levels, constituted an important concern due, on one hand, to the great volume of radioactive wastes generated during the operations. On the other hand, it should be outstanding that the capacity of radioactive wastes stockpiling in IPEN found been exhausted. In function of the large waste volume generated in the dismantling operations, the main concems and focuses of research and technological development in the IPEN's Chemical and Environmental Center--CQMA have been the effluent and waste treatment subjects, besides the development of some special decontamination techniques, since most old nuclear fuel cycle facilities are installed in the CQMA's area. The reduction of the radioactive waste volume has a significant impact in the decommissioning costs and in the amount of material to be stored. The mentioned steel structures, during the operations and after ten or twelve years after the facilities shut down, have presented severe corrosion. In the past, to protect them, several layers of paint were applied. Traditional decontamination methods were tried, such as acid pickling, alkaline washing and ultrasonic baths. Nevertheless, these methods have failed to reach effective decontamination. In this paper, we described some aspects and problems in decommissioning of IPEN's nuclear fuel cycle facilities and it is presented an innovative method for radioactive superficial decontamination of steel structures using different molten salt compositions and temperatures as stripping media.展开更多
This paper describes a stripping method for the determination of zidovudine at the submicromolar concentration levels. This method is based on the controlled adsorptive accumulation of zidovudine at the thin-film merc...This paper describes a stripping method for the determination of zidovudine at the submicromolar concentration levels. This method is based on the controlled adsorptive accumulation of zidovudine at the thin-film mercury electrode, followed by a linear-sweep stripping voltammetry measurement of the surface species. Optimal experimental conditions include a NaOH solution of 2.0 × 10–3 mol●L–1 (sup-porting electrolyte), an accumulation potential of –0.30 V and a scan rate of 100 mV?s–1. The response of zidovudine is linear over the concentration range 0.01 - 0.08 ppm. After an accumulation time of 5 minutes, the detection limit was found to be 0.67 ppb (2.5 × 10–9 mol●L–1). More convenient methods to measure zidovudine concentration in the presence of the didanosine, acyclovir, nevirapine, lamivudine, and efavirenz, were also investigated. The presence of zidovudine together with ATP or ssDNA demonstrates the utility of this method.展开更多
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ...The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.展开更多
The elcetrochemical characteristics of boron doped polycrystalline diamond thin film (BDF) electrode 4×4 mm 2 in size were studied using cyclic voltammetry and potentiostatic method. The diamond electrode exhib...The elcetrochemical characteristics of boron doped polycrystalline diamond thin film (BDF) electrode 4×4 mm 2 in size were studied using cyclic voltammetry and potentiostatic method. The diamond electrode exhibits adequate electrochemical activity and its response current changes linearly with K 3Fe(CN) 6 concentrations. The response current is proportional to the square root of the scan rate, reflecting mass transport controlled by planar diffusion. Stable mass transport can be quickly established within 4s. The BDF electrode provides good resolving power for the determination of lead and cadmium and gives satisfactory results in the analysis of pure water sample.展开更多
In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The el...In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The electrode prepared using a large applied current density showed an increased internal electroactive area and a significantly improved electrochemical performance.The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb(Ⅱ)and Cd(Ⅱ)in the range of 5–50 μg·L^(-1)were presented in combination with square wave stripping voltammetry in model solution.Compared with non-porous Bi film electrode,the dendritic Bi film electrode exhibited higher sensitivity and lower detection limit.The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.展开更多
Most electronics such as sensors,actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy.Transferring the ceramic films from their growth substrates for assembling elec...Most electronics such as sensors,actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy.Transferring the ceramic films from their growth substrates for assembling electronic devices commonly requires chemical or physical etching,which comes at the sacrifice of the substrate materials,film cracks,and environmental contamination.Here,we introduce a van der Waals stripping method to fabricate large-area and freestanding piezoceramic thin films in a simple,green,and cost-effective manner.The introduction of the quasi van der Waals epitaxial platinum layer enables the capillary force of water to drive the separation process of the film and substrate interface.The fabricated lead-free film,Ba_(0.85)Ca_(0.15)Zr_(0.1)Ti_(0.9)O_(3)(BCZT),shows a high piezoelectric coefficient d_(33)=209±10 pm V−1 and outstanding flexibility of maximum strain 2%.The freestanding feature enables a wide application scenario,including micro energy harvesting,and covid-19 spike protein detection.We further conduct a life cycle analysis and quantify the low energy consumption and low pollution of the water-based stripping film method.展开更多
On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict ...On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.展开更多
The outstanding properties of CVD diamond film such as electronic, optical, thermal and mechanical and the high radiation hardness have made it an ideal candidate material for radiation detectors in severe environment...The outstanding properties of CVD diamond film such as electronic, optical, thermal and mechanical and the high radiation hardness have made it an ideal candidate material for radiation detectors in severe environments. Fabrication of 'detector grade' CVD diamond films and development of CVD diamond detectors have been leading edge subjects. Micro-strip gas chamber (MSGC) fabricated on CVD diamond substrate would overcome the charge-up effect and the substrate instability, which has been a hotspot in the research of gas detectors.展开更多
A stripping method for the determination of hypoxanthine in the presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of hypoxanthine-copp...A stripping method for the determination of hypoxanthine in the presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of hypoxanthine-copper at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10﹣3 mol·L﹣1 NaOH solution as electrolyte supporting, an accumulation potential of ﹣0.50 V and a linear scan rate of 200 mV·s﹣1. The response of hypoxanthine-copper is linear over the concentration ranges of 10 - 60 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 250 ppt (1.8 × 10﹣9 mol·L﹣1). Adequate conditions for measuring the hypoxanthine in the presence of metal ions, xanthine, uric acid and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of hypoxanthine associated in ATP or ssDNA.展开更多
Lithium(Li)metal is the most promising anode for improving the energy density of currently commercialized Li-ion batteries.However,its practical application is limited due to its high reactivity to electrolytes,which ...Lithium(Li)metal is the most promising anode for improving the energy density of currently commercialized Li-ion batteries.However,its practical application is limited due to its high reactivity to electrolytes,which induces severe electrolyte decomposition and Li-dendrite growth.Interphases are usually constructed on Li anode to address the above issue.Meanwhile,it is a big challenge to balance the stability and plating/stripping overpotential of Li anode.In this work,we report a novel strategy for constructing a highly stable and lowly polarized surface film on Li anode.A chemically and structurally unique film is formed by simply dropping a zinc trifluoromethanesulfonate[Zn(OTF)_(2)]and fluoroethylene carbonate(FEC)-containing solution onto Li anode.This unique film consists of inner nucleation sites and outer protection textures,mainly containing Li–Zn alloy and LiF/polymer,respectively.The former results from the preferential reduction of Zn(OTF)_(2),providing nucleation sites with low polarization for Li plating/stripping.In contrast,the latter arises from the subsequent reduction of FEC,providing protection for the underneath Li–Zn alloy and Li metal and ensuring the stability of Li anode.The Li anode with such a unique surface film exhibits excellent cycling stability and low plating/stripping overpotentials,which have been demonstrated using Li//Li symmetric and Li//LiFePO_(4)full cells.展开更多
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could b...In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.展开更多
Surface plasmon resonance (SPR) is obtained by exciting the surface plasmon (SP) at the metal and dielectric interface, which can greatly enhance the extraordinary optical transmission (EOT) through a nanoslit m...Surface plasmon resonance (SPR) is obtained by exciting the surface plasmon (SP) at the metal and dielectric interface, which can greatly enhance the extraordinary optical transmission (EOT) through a nanoslit milled in the metal film. We present a structure with a 50-nm-wide silver nanoslit for EOT by coupling light into the dielectric interlayer between periodic strips and a metal film. When the period of the metallic strips is equal to the wavelength of the SPR, the transmission efficiency of 187.6 through the nanoslit is enhanced. The metallic strip width over the nanoslit is optimized to improve transmission efficiency, and the maximal efficiency of 204.3 is achieved.展开更多
In order to solve the problem of residual film pollution caused by large area of cotton mulched planting in Xinjiang,a strip type residual film recycling and baling machine was designed,which can complete mulching fil...In order to solve the problem of residual film pollution caused by large area of cotton mulched planting in Xinjiang,a strip type residual film recycling and baling machine was designed,which can complete mulching film picking up,impurities separation,baling and other operations.The picking up device,as the key part of residual film recycling machine,was designed and analyzed.The kinematics of the pick-up nail tooth was analyzed,and its motion equation,motion trajectory and the conditions for completing the film pick-up were determined.And the key parameters were determined by analyzing the conditions of no missing picking and the stress of the residual film.According to the Box-Benhnken test design principle,field experiments were carried out with the forward speed of machine,the pickup speed ratio and the number of auxiliary film removing mechanisms as the key experimental factors,and the residual film pickup rate,the cotton stalk content and the residual film winding rate as the operation performance indexes of the picking up device.The mathematical models between the experimental factors and indexes were established,and the effect of each factor was analyzed.Through multi-objective parameter optimization and field experiment,the optimal combination of operation parameters was obtained as follows:the forward speed of machine of 1.67 m/s,the pickup speed ratio of 1.13,and the number of auxiliary film removing mechanisms of 6.Under this parameter combination,the pickup rate of residual film was 88.9%,the cotton stalk content in recycled residual film of 3.9%,and the residual film winding rate of 1.5%.The absolute error with the theoretical value was less than 0.6%.The research results show that the picking up device has stable operation performance and good residual film recycling effect,which meets the design and practical operation requirements.展开更多
Strip-like Fe Co films were patterned by a traditional lithograph process from intrinsically isotropic continuous Fe Co films. The strip-patterned Fe Co film shows a strong in-plane uniaxial magnetic anisotropy with e...Strip-like Fe Co films were patterned by a traditional lithograph process from intrinsically isotropic continuous Fe Co films. The strip-patterned Fe Co film shows a strong in-plane uniaxial magnetic anisotropy with easy axis along the length direction of the strip. The angular dependences of remanence ratio, switching field, and coercivity indicate that the magnetization reversal mechanism of the strip-patterned Fe Co film is coherent rotation and domain wall depinning when the applied field is near the hard axis and easy axis, respectively. The consistency of the experimental hysteresis loops of the strip-patterned Fe Co film and calculated hysteresis loops with a simple in-plane uniaxial anisotropy model indicates that the strip-patterned Fe Co film behaves as a single domain. The absence of the domain wall and the strong in-plane anisotropy field make the strip-patterned Fe Co films have much potential for high-frequency application.展开更多
基金Funded by the National Natural Science Foundation of China(No. 51171011)
文摘The chemical stripping method of titanium alloy oxide films was studied. An environment friendly solution hydrogen peroxide and sodium hydroxide without hydrofluoric acid or fluoride were used to strip the oxide films. The morphologies of the surface and cross-section of the oxide films before and after the films stripping were characterized by using scanning electron microscopy (SEM). The microstructure and chemical compositions of the oxide films before and after the films stripping were investigated by using Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). It was shown that the thickness of the oxide film was in the range of 5-6 μm. The oxide films were stripped for 2 to 8 min in the solution. Moreover, the effect of the stripping time on the efficiency of the film stripping was investigated, and the optimum stripping time was between 6-8 min. When the stripping solution completely dissolved the whole film, the α/β microstructure of the titanium alloy Ti-10V-2Fe-3Al was partly revealed. The stripping mechanism was discussed in terms of the dissolution of film delamination. The hydrogen peroxide had a significant effect on the dissolution of the titanium alloy anodic oxide film. The feasibility of the dissolution reaction also was evaluated.
文摘Repassivation behaviour of the passive film formed on lean duplex stainless steel UNS S32101 and austenitic stainless steel UNS S30403 in a CO2-saturated oilfield environment has been studied. The native passive film on the alloys was thinned/removed by stepping the potential of the alloy to ﹣850 mV/Ag/AgCl for 30 minutes. Potentiostatic measurements were then taken at potentials of ﹣200, ﹣100, 0, 100 and 200 mV versus Ag/AgCl. Results show that the passive film repassivates at potentials of ﹣200 and ﹣100 mV and 0 mV for both alloys at 50°C. The current density however continues to rise for potentials of 100 and 200 mV. This shows that both alloys are susceptible to pitting at potentials above 100 mV at the test temperature of 50°C.
文摘The main practical difficulty associated to the task of the dismantling and decommissioning of the IPEN's old nuclear fuel cycle facilities has been the big amount of radioactive waste generated in the dismantling operations. The waste is mainly in the form of contaminated carbon steel structures. In the IPEN, the presence of contamination in the equipments, structures and buildings, although restricted to low and medium activity levels, constituted an important concern due, on one hand, to the great volume of radioactive wastes generated during the operations. On the other hand, it should be outstanding that the capacity of radioactive wastes stockpiling in IPEN found been exhausted. In function of the large waste volume generated in the dismantling operations, the main concems and focuses of research and technological development in the IPEN's Chemical and Environmental Center--CQMA have been the effluent and waste treatment subjects, besides the development of some special decontamination techniques, since most old nuclear fuel cycle facilities are installed in the CQMA's area. The reduction of the radioactive waste volume has a significant impact in the decommissioning costs and in the amount of material to be stored. The mentioned steel structures, during the operations and after ten or twelve years after the facilities shut down, have presented severe corrosion. In the past, to protect them, several layers of paint were applied. Traditional decontamination methods were tried, such as acid pickling, alkaline washing and ultrasonic baths. Nevertheless, these methods have failed to reach effective decontamination. In this paper, we described some aspects and problems in decommissioning of IPEN's nuclear fuel cycle facilities and it is presented an innovative method for radioactive superficial decontamination of steel structures using different molten salt compositions and temperatures as stripping media.
文摘This paper describes a stripping method for the determination of zidovudine at the submicromolar concentration levels. This method is based on the controlled adsorptive accumulation of zidovudine at the thin-film mercury electrode, followed by a linear-sweep stripping voltammetry measurement of the surface species. Optimal experimental conditions include a NaOH solution of 2.0 × 10–3 mol●L–1 (sup-porting electrolyte), an accumulation potential of –0.30 V and a scan rate of 100 mV?s–1. The response of zidovudine is linear over the concentration range 0.01 - 0.08 ppm. After an accumulation time of 5 minutes, the detection limit was found to be 0.67 ppb (2.5 × 10–9 mol●L–1). More convenient methods to measure zidovudine concentration in the presence of the didanosine, acyclovir, nevirapine, lamivudine, and efavirenz, were also investigated. The presence of zidovudine together with ATP or ssDNA demonstrates the utility of this method.
基金supported from the National Natural Science Foundation of China(Nos.52204356,52274342,and 52130408)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ40762 and 2021JJ40731)。
文摘The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.
文摘The elcetrochemical characteristics of boron doped polycrystalline diamond thin film (BDF) electrode 4×4 mm 2 in size were studied using cyclic voltammetry and potentiostatic method. The diamond electrode exhibits adequate electrochemical activity and its response current changes linearly with K 3Fe(CN) 6 concentrations. The response current is proportional to the square root of the scan rate, reflecting mass transport controlled by planar diffusion. Stable mass transport can be quickly established within 4s. The BDF electrode provides good resolving power for the determination of lead and cadmium and gives satisfactory results in the analysis of pure water sample.
基金Supported by the National Natural Science Foundation of China(51472073,51201058)
文摘In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The electrode prepared using a large applied current density showed an increased internal electroactive area and a significantly improved electrochemical performance.The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb(Ⅱ)and Cd(Ⅱ)in the range of 5–50 μg·L^(-1)were presented in combination with square wave stripping voltammetry in model solution.Compared with non-porous Bi film electrode,the dendritic Bi film electrode exhibited higher sensitivity and lower detection limit.The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.
基金supported by General Research Grant(Project No.11212021,No.11210822)Early Career Scheme(Project No.CityU 21210619)from the Research Grants Council of the Hong Kong Special Administrative Regionthe Innovation and Technology Fund(ITS/065/20,GHP/096/19SZ)from the Innovation and Technology Commission of the Hong Kong Special Administrative Region.
文摘Most electronics such as sensors,actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy.Transferring the ceramic films from their growth substrates for assembling electronic devices commonly requires chemical or physical etching,which comes at the sacrifice of the substrate materials,film cracks,and environmental contamination.Here,we introduce a van der Waals stripping method to fabricate large-area and freestanding piezoceramic thin films in a simple,green,and cost-effective manner.The introduction of the quasi van der Waals epitaxial platinum layer enables the capillary force of water to drive the separation process of the film and substrate interface.The fabricated lead-free film,Ba_(0.85)Ca_(0.15)Zr_(0.1)Ti_(0.9)O_(3)(BCZT),shows a high piezoelectric coefficient d_(33)=209±10 pm V−1 and outstanding flexibility of maximum strain 2%.The freestanding feature enables a wide application scenario,including micro energy harvesting,and covid-19 spike protein detection.We further conduct a life cycle analysis and quantify the low energy consumption and low pollution of the water-based stripping film method.
基金Supported by the National Natural Science Foundation of China(11172205,11372219,51176137)
文摘On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.
文摘The outstanding properties of CVD diamond film such as electronic, optical, thermal and mechanical and the high radiation hardness have made it an ideal candidate material for radiation detectors in severe environments. Fabrication of 'detector grade' CVD diamond films and development of CVD diamond detectors have been leading edge subjects. Micro-strip gas chamber (MSGC) fabricated on CVD diamond substrate would overcome the charge-up effect and the substrate instability, which has been a hotspot in the research of gas detectors.
文摘A stripping method for the determination of hypoxanthine in the presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of hypoxanthine-copper at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10﹣3 mol·L﹣1 NaOH solution as electrolyte supporting, an accumulation potential of ﹣0.50 V and a linear scan rate of 200 mV·s﹣1. The response of hypoxanthine-copper is linear over the concentration ranges of 10 - 60 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 250 ppt (1.8 × 10﹣9 mol·L﹣1). Adequate conditions for measuring the hypoxanthine in the presence of metal ions, xanthine, uric acid and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of hypoxanthine associated in ATP or ssDNA.
基金supported by the National Key Research and Development Project of China(2018YFE0124800)。
文摘Lithium(Li)metal is the most promising anode for improving the energy density of currently commercialized Li-ion batteries.However,its practical application is limited due to its high reactivity to electrolytes,which induces severe electrolyte decomposition and Li-dendrite growth.Interphases are usually constructed on Li anode to address the above issue.Meanwhile,it is a big challenge to balance the stability and plating/stripping overpotential of Li anode.In this work,we report a novel strategy for constructing a highly stable and lowly polarized surface film on Li anode.A chemically and structurally unique film is formed by simply dropping a zinc trifluoromethanesulfonate[Zn(OTF)_(2)]and fluoroethylene carbonate(FEC)-containing solution onto Li anode.This unique film consists of inner nucleation sites and outer protection textures,mainly containing Li–Zn alloy and LiF/polymer,respectively.The former results from the preferential reduction of Zn(OTF)_(2),providing nucleation sites with low polarization for Li plating/stripping.In contrast,the latter arises from the subsequent reduction of FEC,providing protection for the underneath Li–Zn alloy and Li metal and ensuring the stability of Li anode.The Li anode with such a unique surface film exhibits excellent cycling stability and low plating/stripping overpotentials,which have been demonstrated using Li//Li symmetric and Li//LiFePO_(4)full cells.
基金supported by the National Natural Scientific Foundation of China(21175112)the Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry,SOA,(GCMAC 1204)the Fujian Key Projects of Science and Technology(2011YZ0001-1)
文摘In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.
基金supported by the Natural Science Foundation Project of CQ CSTC (No.2010BB2352)the Chongqing Committee of Education (No.KJ101203)
文摘Surface plasmon resonance (SPR) is obtained by exciting the surface plasmon (SP) at the metal and dielectric interface, which can greatly enhance the extraordinary optical transmission (EOT) through a nanoslit milled in the metal film. We present a structure with a 50-nm-wide silver nanoslit for EOT by coupling light into the dielectric interlayer between periodic strips and a metal film. When the period of the metallic strips is equal to the wavelength of the SPR, the transmission efficiency of 187.6 through the nanoslit is enhanced. The metallic strip width over the nanoslit is optimized to improve transmission efficiency, and the maximal efficiency of 204.3 is achieved.
基金supported by the National Key Research and Development Program of China (Grant No.2020YFD1001004)China Agriculture Research System-Cotton (CARS-15-23).
文摘In order to solve the problem of residual film pollution caused by large area of cotton mulched planting in Xinjiang,a strip type residual film recycling and baling machine was designed,which can complete mulching film picking up,impurities separation,baling and other operations.The picking up device,as the key part of residual film recycling machine,was designed and analyzed.The kinematics of the pick-up nail tooth was analyzed,and its motion equation,motion trajectory and the conditions for completing the film pick-up were determined.And the key parameters were determined by analyzing the conditions of no missing picking and the stress of the residual film.According to the Box-Benhnken test design principle,field experiments were carried out with the forward speed of machine,the pickup speed ratio and the number of auxiliary film removing mechanisms as the key experimental factors,and the residual film pickup rate,the cotton stalk content and the residual film winding rate as the operation performance indexes of the picking up device.The mathematical models between the experimental factors and indexes were established,and the effect of each factor was analyzed.Through multi-objective parameter optimization and field experiment,the optimal combination of operation parameters was obtained as follows:the forward speed of machine of 1.67 m/s,the pickup speed ratio of 1.13,and the number of auxiliary film removing mechanisms of 6.Under this parameter combination,the pickup rate of residual film was 88.9%,the cotton stalk content in recycled residual film of 3.9%,and the residual film winding rate of 1.5%.The absolute error with the theoretical value was less than 0.6%.The research results show that the picking up device has stable operation performance and good residual film recycling effect,which meets the design and practical operation requirements.
基金financially supported by the National Natural Science Foundation of China (Nos. 51171076 and 51101079)the Fundamental Research Funds for Central Universities (Nos. lzujbky-2010-172 and Lzujbky-2012-27)
文摘Strip-like Fe Co films were patterned by a traditional lithograph process from intrinsically isotropic continuous Fe Co films. The strip-patterned Fe Co film shows a strong in-plane uniaxial magnetic anisotropy with easy axis along the length direction of the strip. The angular dependences of remanence ratio, switching field, and coercivity indicate that the magnetization reversal mechanism of the strip-patterned Fe Co film is coherent rotation and domain wall depinning when the applied field is near the hard axis and easy axis, respectively. The consistency of the experimental hysteresis loops of the strip-patterned Fe Co film and calculated hysteresis loops with a simple in-plane uniaxial anisotropy model indicates that the strip-patterned Fe Co film behaves as a single domain. The absence of the domain wall and the strong in-plane anisotropy field make the strip-patterned Fe Co films have much potential for high-frequency application.