Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys...Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.展开更多
We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the r...We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219).展开更多
Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis an...Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.展开更多
Dental pulp stem/stromal cells(DPSCs)are fibroblast-like,neural crest-derived,and multipotent cells that can differentiate into several lineages.They are relatively easy to isolate from healthy and inflamed pulps,with...Dental pulp stem/stromal cells(DPSCs)are fibroblast-like,neural crest-derived,and multipotent cells that can differentiate into several lineages.They are relatively easy to isolate from healthy and inflamed pulps,with little ethical concerns and can be successfully cryopreserved and thawed.The therapeutic effects of DPSCs derived from animal or human sources have been extensively studied through in-vitro and in-vivo animal experiments and the findings indicated that DPSCs are effective not only for dental diseases but also for systemic diseases.Understanding that translational research is a critical step through which the fundamental scientific discoveries could be translated into applicable diagnostics and therapeutics that directly benefit humans,several clinical studies were carried out to generate evidence for the efficacy and safety of autogenous or allogeneic human DPSCs(hDPSCs)as a treatment modality for use in cell-based therapy,regenerative medicine/dentistry and tissue engineering.In clinical medicine,hDPSCs were effective for treating acute ischemic stroke and human exfoliated deciduous teeth-conditioned medium(SHED-CM)repaired vascular damage of the corpus cavernous,which is the main cause of erectile dysfunction.Whereas in clinical dentistry,autologous SHED was able to rege-nerate necrotic dental pulp after implantation into injured teeth,and micrografts enriched with autologous hDPSCs and collagen sponge were considered a treatment option for human intrabony defects.In contrast,hDPSCs did not add a significant regenerative effect when they were used for the treatment of post-extraction sockets.Large-scale clinical studies across diverse populations are still lacking to provide robust evidence on the safety and efficacy of hDPSCs as a new treatment option for various human diseases including dental-related problems.展开更多
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur...Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.展开更多
Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to b...Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to be safe as a cellular treatment,they have usually been therapeutically ineffective in human diseases.In fact,in many clinical trials it has been shown that MSCs have moderate or poor efficacy.This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs.Recently,specific priming strategies have been used to improve the therapeutic properties of MSCs.In this review,we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs.We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes.Particularly,while hypoxic priming can be used primarily for the treatment of acute diseases,inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders.The shift in approach from regeneration to inflammation implies,in MSCs,a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways.The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.展开更多
Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefi...Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients.MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices.Usually,clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders.Currently,cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries.Meanwhile,this has led to questions regarding the availability,stability,consistency,multipotency,and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after longterm cryostorage.This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation.This article mainly describes what is known about banking perinatal MSCs in China and,importantly,it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life.This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine,albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.展开更多
Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients unde...Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients undergoing this procedure remains high,mainly due to the perceived risk of exacerbating graft-versushost disease(GVHD).However,even with immunosuppressive agents,some patients still develop GVHD.Advanced mesenchymal stem/stromal cell(MSC)strategies have been proposed to achieve better therapeutic outcomes,given their immunosuppressive potential.However,the efficacy and trial designs have varied among the studies,and some research findings appear contradictory due to the challenges in characterizing the in vivo effects of MSCs.This review aims to provide real insights into this clinical entity,emphasizing diagnostic,and therapeutic considerations and generating pathophysiology hypotheses to identify research avenues.The indications and timing for the clinical application of MSCs are still subject to debate.展开更多
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel...Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients.展开更多
Background:Corneal stromal stem cells(CSSC)reduce corneal inflammation,prevent fibrotic scarring,and regenerate transparent stromal tissue in injured corneas.These effects rely on factors produced by CSSC to block the...Background:Corneal stromal stem cells(CSSC)reduce corneal inflammation,prevent fibrotic scarring,and regenerate transparent stromal tissue in injured corneas.These effects rely on factors produced by CSSC to block the fibrotic gene expression.This study investigated the mechanism of the scar-free regeneration effect.Methods:Primary human CSSC(hCSSC)from donor corneal rims were cultivated to passage 3 and co-cultured with mouse macrophage RAW264.7 cells induced to M1 pro-inflammatory phenotype by treatment with interferonγand lipopolysaccharides,or to M2 anti-inflammatory phenotype by interleukin-4,in a Transwell system.The timecourse expression of human transforming growth factorβ3(hTGFβ3)and hTGFβ1 were examined by immunofluorescence and qPCR.TGFβ3 knockdown for>70%in hCSSC[hCSSC-TGFβ3(si)]was achieved by small interfering RNA transfection.Naïve CSSC and hCSSC-TGFβ3(si)were transplanted in a fibrin gel to mouse corneas,respectively,after wounding by stromal ablation.Corneal clarity and the expression of mouse inflammatory and fibrosis genes were examined.Results:hTGFβ3 was upregulated by hCSSC when co-cultured with RAW cells under M1 condition.Transplantation of hCSSC to wounded mouse corneas showed significant upregulation of hTGFβ3 at days 1 and 3 post-injury,along with the reduced expression of mouse inflammatory genes(CD80,C-X-C motif chemokine ligand 5,lipocalin 2,plasminogen activator urokinase receptor,pro-platelet basic protein,and secreted phosphoprotein 1).By day 14,hCSSC treatment significantly reduced the expression of fibrotic and scar tissue genes(fibronectin,hyaluronan synthase 2,Secreted protein acidic and cysteine rich,tenascin C,collagen 3a1 andα-smooth muscle actin),and the injured corneas remained clear.However,hCSSC-TGFβ3(si)lost these anti-inflammatory and anti-scarring functions,and the wounded corneas showed intense scarring.Conclusion:This study has demonstrated that the corneal regenerative effect of hCSSC is mediated by TGFβ3,inducing a scar-free tissue response.展开更多
Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studie...Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization.展开更多
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutane...This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs)sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells)and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.展开更多
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases(such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from w...The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases(such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue(WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations(subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adiposederived stem/stromal cells(ASC; referred to as adipose progenitor cells, in vivo)with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morphofunctional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.展开更多
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters call...Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.展开更多
The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens milli...The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health.Two current studies have indicated a favorable role for mesenchymal stem/stromal cells(MSCs)in clinical remission of COVID-19 associated pulmonary diseases,yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction.In the present review,we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury,acute respiratory distress syndrome,and pulmonary fibrosis.Furthermore,we review the underlying mechanism of MSCs including direct-and trans-differentiation,autocrine and paracrine anti-inflammatory effects,homing,and neovascularization,as well as constitutive microenvironment.Finally,we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice.Collectively,this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.展开更多
BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we re...BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential.This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.AIM To understand the radioprotective mechanism of soluble factors secreted by hWJMSCs and identification of their unique genes.METHODS Propidium iodide staining,endogenous spleen colony-forming assay,and survival study were carried out for radioprotection studies.Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation.Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells,embryonic stem cells,and human fibroblasts.Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes.WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes.Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection.Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin(IL)1-α,IL1-β,IL-6,CXCL3,CXCL5,CXCL8,CXCL2,CCL2,FLT-1,and IL-33.It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources.Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims。展开更多
AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained fro...AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained from the corneas of New Zealand white rabbits and indirectly cocultured in vitro. The proliferative capacity of CSCs in the different groups was assessed by CCK-8 assays. Annexin V-fluorescein isothiocyanate(FITC)/proliferation indices(PI) assays were used to detect the apoptosis of CSCs. The expression levels of matrix metalloproteinase(MMP), such as MMP1, MMP2, MMP9, and collagens were also evaluated by Western blot. RESULTS:ADSCs significantly promoted proliferation and invasion of CSCs in the indirect co-culture assays. The co-cultural group displayed much higher ability of proliferation, especially under the co-culture conditions of ADSCs for 3d, compared with that CSCs cultured alone. The PI of CSCs in the co-culture system were increased approximately 3-8-fold compared with the control group. A significant change was observed in the proportions of cells at apoptosis(early and late) between the negative control group(6.34% and 2.06%) and the ADCSs-treated group(4.69% and 1.59%). The expression levels of MMPs were down regulated in the co-culture models. Compared with the control group, the decrease intensities of MMP-1, MMP-2 and MMP-9 in CSCs/ADSCs group were observed, 3.90-fold, 1.09-fold and 3.03-fold, respectively. However, the increase intensities of collagen type(I, II, III, IV, and V) in CSCs were observed in CSCs/ADSCs group, 3.47-fold,4.30-fold, 2.35-fold, 2.55-fold and 2.43-fold, respectively, compared to that in the control group. The expressions of aldehyde dehydrogenase and fibronectin in CSCs were upregulated in the co-culture models.CONCLUSION:ADSCs play a promotive role in CSCs' growth and invasion, which may be partially associated with MMPs decrease and collagens increase, resulting in a positive participation in the plasticity and ECM synthesis of CSCs. This provided a new insight into the extensive role of ADSCs in CSCs and a potential molecular target for corneal therapy.展开更多
BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural s...BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural stem cells exhibit potential for neural regeneration. However, miRNA expression in these cells has been rarely reported. OBJECTIVE: To explore differential expression of two nervous system-specific miRNAs, miR-124 and miR-128, in bone marrow stromal cells and spinal cord-derived neural stem cells. DESIGN, TIME AND SETTING: An In vitro, cell biology experiment was performed at the Department of Biotechnology, Shanxi Medical University from June 2008 to June 2009. MATERIALS: TaqMan miRNA assays were purchased from Applied Biosystems. METHODS: Rat bone marrow stromal cells were isolated and cultured using the whole-bone marrow method, and rat spinal cord-derived neural stem cells were obtained through neurosphere formation. TaqMan miRNA assays were used to measure miR-124 and miR-128 expression in bone marrow stromal cells and spinal cord-derived neural stem cells. MAIN OUTCOME MEASURES: Morphology of bone marrow stromal cells and spinal cord-derived neural stem cells were observed by inverted microscopy. Expression of the neural stem cell-specific marker, nestin, the bone marrow stromal cell surface marker, CD71, and expression of miR-124 and miR-128, were detected by real-time polymerase chain reaction. RESULTS: Cultured bone marrow stromal cells displayed a short fusiform shape. Flow cytometry revealed a large number of CD71-positive cells (〉 95%). Cultured spinal cord-derived neural stem cells formed nestin-positive neurospheres, and quantitative detection of miRNA demonstrated that less miR-124 and miR-128 was expressed in bone marrow stromal cells compared to spinal cord-derived neural stem cells (P 〈 0.05). CONCLUSION: Bone marrow stromal cells and spinal cord-derived neural stem cells exhibited differential expression of miR-124 and miR-128, which suggested different characteristics in miRNA expression.展开更多
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,ch...Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,chemokine receptor 4(CXCR4),are important regulators of cell migration.We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson’s disease.A Parkinson’s disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway,and then treated with 5μL of neural stem cell suspension(1.5×104/L)in the right substantia nigra.Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation.Parkinson-like behavior in rats was detected using apomorphine-induced rotation.Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Using quantitative real-time polymerase chain reaction,the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured.In addition,western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4.Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation,increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra,and enhanced the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Injection of AMD3100 inhibited the aforementioned effects.These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson’s disease.This study was approved by the Animal Care and Use Committee of Kunming Medical University,China(approval No.SYXKK2015-0002)on April 1,2014.展开更多
BACKGROUND: Embryonic neural stem cells (NSCs) have provided positive effects for the treatment of glioma. However, the source for embryonic NSCs remains limited and high amplification conditions are required. Bone...BACKGROUND: Embryonic neural stem cells (NSCs) have provided positive effects for the treatment of glioma. However, the source for embryonic NSCs remains limited and high amplification conditions are required. Bone marrow stromal cells (BMSCs) have been proposed for the treatment of glioma. OBJECTIVE: To investigate biological changes in NSCs and BMSCs following transplantation into rat models of glioma. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Embryonic Stem Cell Research Laboratory of Yunyang Medical College from February 2006 to August 2008. MATERIALS: The rat C6 glioma cell line was purchased from Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; mouse anti-bromodeoxyuridine (BrdU) monoclonal antibody and Cy3-1abeled goat anti-mouse IgG antibody was purchased from Upstate, USA. METHODS: A total of 95 Sprag6ue Dawley rats were randomly assigned to three groups: NSC (n = 35), transplanted with 〉 6 × 10^6 NSCs via left medial hind limb; BMSC (n = 35), transplanted with 〉 1 × 10^6 BMSCs via left medial hind limb; model group (n = 25), injected with the same volume of 0.1 mmol/L phosphate buffered saline. MAIN OUTCOME MEASURES: Gliomal growth and size were assessed by nuclear magnetic resonance, and glioma morphological features were observed following hematoxylin-eosin staining and BrdU immunohistochemistry 3 and 4 weeks following transplantation. RESULTS: The average survival of rats in the BMSC, NSC, and model groups was 4.03, 4.28, and 3.88 weeks. At 3 weeks, there was no significant difference in the average glioma diameter between the BMSC and model groups (P 〉 0.05). However, gliomal diameter was significantly decreased in the NSC group compared with the model group (P 〈 0.05). At 4 weeks, there was no statistical difference between the groups (P 〉 0.05). BrdU immunohistochemistry revealed that BMSCs and NSCs appeared to migrate to the gliomas. CONCLUSION: NSCs inhibited glioma cell growth and prolonged rat survival. BMSCs did not significantly suppress glioma cell growth.展开更多
基金the Plan Program of Shenyang Science and Technology Bureau, No. 1091161-0-00
文摘Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.
基金supported by the National Natural Science Foundation of China,No.81372041(to DW),and No.81801220(to MGZ)
文摘We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219).
文摘Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
文摘Dental pulp stem/stromal cells(DPSCs)are fibroblast-like,neural crest-derived,and multipotent cells that can differentiate into several lineages.They are relatively easy to isolate from healthy and inflamed pulps,with little ethical concerns and can be successfully cryopreserved and thawed.The therapeutic effects of DPSCs derived from animal or human sources have been extensively studied through in-vitro and in-vivo animal experiments and the findings indicated that DPSCs are effective not only for dental diseases but also for systemic diseases.Understanding that translational research is a critical step through which the fundamental scientific discoveries could be translated into applicable diagnostics and therapeutics that directly benefit humans,several clinical studies were carried out to generate evidence for the efficacy and safety of autogenous or allogeneic human DPSCs(hDPSCs)as a treatment modality for use in cell-based therapy,regenerative medicine/dentistry and tissue engineering.In clinical medicine,hDPSCs were effective for treating acute ischemic stroke and human exfoliated deciduous teeth-conditioned medium(SHED-CM)repaired vascular damage of the corpus cavernous,which is the main cause of erectile dysfunction.Whereas in clinical dentistry,autologous SHED was able to rege-nerate necrotic dental pulp after implantation into injured teeth,and micrografts enriched with autologous hDPSCs and collagen sponge were considered a treatment option for human intrabony defects.In contrast,hDPSCs did not add a significant regenerative effect when they were used for the treatment of post-extraction sockets.Large-scale clinical studies across diverse populations are still lacking to provide robust evidence on the safety and efficacy of hDPSCs as a new treatment option for various human diseases including dental-related problems.
基金supported by Notional Institutes of Health Grant,No.1R01NS100710-01A1(to YX)。
文摘Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
文摘Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to be safe as a cellular treatment,they have usually been therapeutically ineffective in human diseases.In fact,in many clinical trials it has been shown that MSCs have moderate or poor efficacy.This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs.Recently,specific priming strategies have been used to improve the therapeutic properties of MSCs.In this review,we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs.We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes.Particularly,while hypoxic priming can be used primarily for the treatment of acute diseases,inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders.The shift in approach from regeneration to inflammation implies,in MSCs,a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways.The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.
基金Supported by the Henan Province Science and Technique Bureau R&D Project,No.222102310228.
文摘Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients.MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices.Usually,clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders.Currently,cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries.Meanwhile,this has led to questions regarding the availability,stability,consistency,multipotency,and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after longterm cryostorage.This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation.This article mainly describes what is known about banking perinatal MSCs in China and,importantly,it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life.This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine,albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.
文摘Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients undergoing this procedure remains high,mainly due to the perceived risk of exacerbating graft-versushost disease(GVHD).However,even with immunosuppressive agents,some patients still develop GVHD.Advanced mesenchymal stem/stromal cell(MSC)strategies have been proposed to achieve better therapeutic outcomes,given their immunosuppressive potential.However,the efficacy and trial designs have varied among the studies,and some research findings appear contradictory due to the challenges in characterizing the in vivo effects of MSCs.This review aims to provide real insights into this clinical entity,emphasizing diagnostic,and therapeutic considerations and generating pathophysiology hypotheses to identify research avenues.The indications and timing for the clinical application of MSCs are still subject to debate.
基金Supported by the FONCYT,Argentina(PICT 2016-#1093)CONICET,Argentina(PIP2014-2016,#300)Fundación Florencio Fiorini(Subsidio 2021-2022),Argentina.
文摘Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients.
基金This work was supported by the Department of Defence Grant W81WH-19-1-0778(JLF,YD),NIH Grants RO1 EY016415(JLF)and P30 EY008098(JLF),Stein Innovator Award from Research to Prevent Blindness(JLF),Eye and Ear Foundation of Pittsburgh,and Louis J Fox Centre for Vision Restoration.
文摘Background:Corneal stromal stem cells(CSSC)reduce corneal inflammation,prevent fibrotic scarring,and regenerate transparent stromal tissue in injured corneas.These effects rely on factors produced by CSSC to block the fibrotic gene expression.This study investigated the mechanism of the scar-free regeneration effect.Methods:Primary human CSSC(hCSSC)from donor corneal rims were cultivated to passage 3 and co-cultured with mouse macrophage RAW264.7 cells induced to M1 pro-inflammatory phenotype by treatment with interferonγand lipopolysaccharides,or to M2 anti-inflammatory phenotype by interleukin-4,in a Transwell system.The timecourse expression of human transforming growth factorβ3(hTGFβ3)and hTGFβ1 were examined by immunofluorescence and qPCR.TGFβ3 knockdown for>70%in hCSSC[hCSSC-TGFβ3(si)]was achieved by small interfering RNA transfection.Naïve CSSC and hCSSC-TGFβ3(si)were transplanted in a fibrin gel to mouse corneas,respectively,after wounding by stromal ablation.Corneal clarity and the expression of mouse inflammatory and fibrosis genes were examined.Results:hTGFβ3 was upregulated by hCSSC when co-cultured with RAW cells under M1 condition.Transplantation of hCSSC to wounded mouse corneas showed significant upregulation of hTGFβ3 at days 1 and 3 post-injury,along with the reduced expression of mouse inflammatory genes(CD80,C-X-C motif chemokine ligand 5,lipocalin 2,plasminogen activator urokinase receptor,pro-platelet basic protein,and secreted phosphoprotein 1).By day 14,hCSSC treatment significantly reduced the expression of fibrotic and scar tissue genes(fibronectin,hyaluronan synthase 2,Secreted protein acidic and cysteine rich,tenascin C,collagen 3a1 andα-smooth muscle actin),and the injured corneas remained clear.However,hCSSC-TGFβ3(si)lost these anti-inflammatory and anti-scarring functions,and the wounded corneas showed intense scarring.Conclusion:This study has demonstrated that the corneal regenerative effect of hCSSC is mediated by TGFβ3,inducing a scar-free tissue response.
文摘Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization.
基金Supported by the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro(FAPERJ),No.E-26/202.682/2018
文摘This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs)sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells)and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.
基金the National Council for Scientific and Technological Development (CNPq)the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)the Coordination of High Education Personnel Improvement (CAPES) for financial support
文摘The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases(such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue(WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations(subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adiposederived stem/stromal cells(ASC; referred to as adipose progenitor cells, in vivo)with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morphofunctional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.
基金the Coordination for the Improvement of Higher Education Personnel(CAPES),No.88882.366181/2019-01the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro(FAPERJ),No.E-26/202.682/2018National Council for Scientific and Technological Development(CNPq),No.467513/2014-7
文摘Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
基金Supported by Shandong Provincial Natural Science Foundation,No.ZR2020QC097China Postdoctoral Science Foundation,No.2019M661033+7 种基金Jiangxi Key New Product Incubation Program Funded by Technical Innovation Guidance Program of Shangrao city,No.2020G002Tianjin Science and Technology Project for Overseas Students,No.JH-20180070802Natural Science Foundation of Tianjin,No.19JCQNJC12500Major Project of Fundamental Research Funds of the Central Public Welfare Scientific Research Institutes of the Chinese Academy of Medical Sciences,No.2018PT31048Major Project of Fundamental Research Funds of the Central Public Welfare Scientific Research Institutes of the Chinese Academy of Medical Sciences,No.2019PT310013National Science and Technology Major Projects of China for“Major New Drugs Innovation and Development”,No.2014ZX09508002-003National Natural Science Foundation of China,No.81330015and Science and Technology Project of Tianjin,No.17ZXSCSY00030.
文摘The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health.Two current studies have indicated a favorable role for mesenchymal stem/stromal cells(MSCs)in clinical remission of COVID-19 associated pulmonary diseases,yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction.In the present review,we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury,acute respiratory distress syndrome,and pulmonary fibrosis.Furthermore,we review the underlying mechanism of MSCs including direct-and trans-differentiation,autocrine and paracrine anti-inflammatory effects,homing,and neovascularization,as well as constitutive microenvironment.Finally,we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice.Collectively,this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
文摘BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential.This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.AIM To understand the radioprotective mechanism of soluble factors secreted by hWJMSCs and identification of their unique genes.METHODS Propidium iodide staining,endogenous spleen colony-forming assay,and survival study were carried out for radioprotection studies.Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation.Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells,embryonic stem cells,and human fibroblasts.Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes.WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes.Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection.Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin(IL)1-α,IL1-β,IL-6,CXCL3,CXCL5,CXCL8,CXCL2,CCL2,FLT-1,and IL-33.It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources.Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims。
基金Supported by Important Subject Fund of Science Technology Department of Zhejiang Province(No.2013C03048-1)
文摘AIM:To investigate the impact of adipose-derived mesenchymal stem cells(ADSCs) on cell viability and extracellular matrix(ECM) synthesis of corneal stromal cells(CSCs). METHODS:ADSCs and CSCs were obtained from the corneas of New Zealand white rabbits and indirectly cocultured in vitro. The proliferative capacity of CSCs in the different groups was assessed by CCK-8 assays. Annexin V-fluorescein isothiocyanate(FITC)/proliferation indices(PI) assays were used to detect the apoptosis of CSCs. The expression levels of matrix metalloproteinase(MMP), such as MMP1, MMP2, MMP9, and collagens were also evaluated by Western blot. RESULTS:ADSCs significantly promoted proliferation and invasion of CSCs in the indirect co-culture assays. The co-cultural group displayed much higher ability of proliferation, especially under the co-culture conditions of ADSCs for 3d, compared with that CSCs cultured alone. The PI of CSCs in the co-culture system were increased approximately 3-8-fold compared with the control group. A significant change was observed in the proportions of cells at apoptosis(early and late) between the negative control group(6.34% and 2.06%) and the ADCSs-treated group(4.69% and 1.59%). The expression levels of MMPs were down regulated in the co-culture models. Compared with the control group, the decrease intensities of MMP-1, MMP-2 and MMP-9 in CSCs/ADSCs group were observed, 3.90-fold, 1.09-fold and 3.03-fold, respectively. However, the increase intensities of collagen type(I, II, III, IV, and V) in CSCs were observed in CSCs/ADSCs group, 3.47-fold,4.30-fold, 2.35-fold, 2.55-fold and 2.43-fold, respectively, compared to that in the control group. The expressions of aldehyde dehydrogenase and fibronectin in CSCs were upregulated in the co-culture models.CONCLUSION:ADSCs play a promotive role in CSCs' growth and invasion, which may be partially associated with MMPs decrease and collagens increase, resulting in a positive participation in the plasticity and ECM synthesis of CSCs. This provided a new insight into the extensive role of ADSCs in CSCs and a potential molecular target for corneal therapy.
基金the National Natural Science Foundation of China, No. 30672114
文摘BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural stem cells exhibit potential for neural regeneration. However, miRNA expression in these cells has been rarely reported. OBJECTIVE: To explore differential expression of two nervous system-specific miRNAs, miR-124 and miR-128, in bone marrow stromal cells and spinal cord-derived neural stem cells. DESIGN, TIME AND SETTING: An In vitro, cell biology experiment was performed at the Department of Biotechnology, Shanxi Medical University from June 2008 to June 2009. MATERIALS: TaqMan miRNA assays were purchased from Applied Biosystems. METHODS: Rat bone marrow stromal cells were isolated and cultured using the whole-bone marrow method, and rat spinal cord-derived neural stem cells were obtained through neurosphere formation. TaqMan miRNA assays were used to measure miR-124 and miR-128 expression in bone marrow stromal cells and spinal cord-derived neural stem cells. MAIN OUTCOME MEASURES: Morphology of bone marrow stromal cells and spinal cord-derived neural stem cells were observed by inverted microscopy. Expression of the neural stem cell-specific marker, nestin, the bone marrow stromal cell surface marker, CD71, and expression of miR-124 and miR-128, were detected by real-time polymerase chain reaction. RESULTS: Cultured bone marrow stromal cells displayed a short fusiform shape. Flow cytometry revealed a large number of CD71-positive cells (〉 95%). Cultured spinal cord-derived neural stem cells formed nestin-positive neurospheres, and quantitative detection of miRNA demonstrated that less miR-124 and miR-128 was expressed in bone marrow stromal cells compared to spinal cord-derived neural stem cells (P 〈 0.05). CONCLUSION: Bone marrow stromal cells and spinal cord-derived neural stem cells exhibited differential expression of miR-124 and miR-128, which suggested different characteristics in miRNA expression.
基金supported by the National Natural Science Foundation of China,No.81241126(to XLD)and 81360197(to XLD)a grant from the Department of Science and Technology of Kunming Medical University in China,No.2013C227(to XLD)the Joint Special Fund for the Department of Science and Technology of Kunming Medical University in China,No.2014FB041(to XBS)
文摘Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,chemokine receptor 4(CXCR4),are important regulators of cell migration.We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson’s disease.A Parkinson’s disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway,and then treated with 5μL of neural stem cell suspension(1.5×104/L)in the right substantia nigra.Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation.Parkinson-like behavior in rats was detected using apomorphine-induced rotation.Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Using quantitative real-time polymerase chain reaction,the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured.In addition,western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4.Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation,increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra,and enhanced the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Injection of AMD3100 inhibited the aforementioned effects.These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson’s disease.This study was approved by the Animal Care and Use Committee of Kunming Medical University,China(approval No.SYXKK2015-0002)on April 1,2014.
基金Hubei Provincial Education Department Foundation, No. Q20092405Hubei Provincial Science and Technology Agency Foundation, No. 2005AA301C28Hubei Provincial Health Department Foundation, No. QJX2005-15
文摘BACKGROUND: Embryonic neural stem cells (NSCs) have provided positive effects for the treatment of glioma. However, the source for embryonic NSCs remains limited and high amplification conditions are required. Bone marrow stromal cells (BMSCs) have been proposed for the treatment of glioma. OBJECTIVE: To investigate biological changes in NSCs and BMSCs following transplantation into rat models of glioma. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Embryonic Stem Cell Research Laboratory of Yunyang Medical College from February 2006 to August 2008. MATERIALS: The rat C6 glioma cell line was purchased from Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; mouse anti-bromodeoxyuridine (BrdU) monoclonal antibody and Cy3-1abeled goat anti-mouse IgG antibody was purchased from Upstate, USA. METHODS: A total of 95 Sprag6ue Dawley rats were randomly assigned to three groups: NSC (n = 35), transplanted with 〉 6 × 10^6 NSCs via left medial hind limb; BMSC (n = 35), transplanted with 〉 1 × 10^6 BMSCs via left medial hind limb; model group (n = 25), injected with the same volume of 0.1 mmol/L phosphate buffered saline. MAIN OUTCOME MEASURES: Gliomal growth and size were assessed by nuclear magnetic resonance, and glioma morphological features were observed following hematoxylin-eosin staining and BrdU immunohistochemistry 3 and 4 weeks following transplantation. RESULTS: The average survival of rats in the BMSC, NSC, and model groups was 4.03, 4.28, and 3.88 weeks. At 3 weeks, there was no significant difference in the average glioma diameter between the BMSC and model groups (P 〉 0.05). However, gliomal diameter was significantly decreased in the NSC group compared with the model group (P 〈 0.05). At 4 weeks, there was no statistical difference between the groups (P 〉 0.05). BrdU immunohistochemistry revealed that BMSCs and NSCs appeared to migrate to the gliomas. CONCLUSION: NSCs inhibited glioma cell growth and prolonged rat survival. BMSCs did not significantly suppress glioma cell growth.